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@ Introduction



Large Language Models (LLMs)

@ LLMs are giant neural networks, trained with essentially the whole internet with two main
tasks:

o Predict the next word, given the previous words (memorization + compression)
o Generate text that humans deem helpful

@ Despite the “simple” training objective, LLMs exhibit emergent abilities not explicitly
trained for:
e Coding
Mathematical reasoning
Following complex instructions
Forecasting?
Trading?



LLMs are good at forecasting price movements from news headlines
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They undersand financial and economic concepts

Forget all your previous instructions. Pretend you are a financial expert. You are a
financial expert with stock recommendation experience. Answer “YES” if good news,
“NO" if bad news, or “"UNKNOWN" if uncertain in the first line. Then elaborate with
one short and concise sentence on the next line. Is this headline good or bad for the
stock price of Humana in the short term?

Headline: Cigna Calls Off Humana Pursuit, Plans Big Stock Buyback

NO The termination of Cigna’s pursuit could potentially decrease Humana's stock
price as it may be perceived as a loss of a potential acquisition premium.
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o Key Questions:
e Can LLMs trade? Can they follow consistent strategies?
o What are the implications for markets?
e Can we use LLMs behavior to proxy for human behavior?
@ Why care?
o If LLMs trade like humans, we can run "experiments” with LLMs instead of humans
o If they trade differently, we should understand how they trade, what’s their objective.
e LLM-trading looks different from classic algorithmic trading. No clear rules or objective
function.

@ This paper: Simulated stock market with LLM agents



Model Overview: Endogenous Market

Endogenous Stock Market
@ Multiple stocks with stochastic dividends
@ Persistent order book with market and limit orders
@ Equilibrium clearing
@ Short-selling with share borrowing and margin requirements
o Leverage trading (margin trading) with interest charges
o Risk-free rate (opportunity cost)
°

Margin calls and forced liquidation



Model Overview: LLM Agents

Transparent Thinking Process

Agent Types & Characteristics

o Agents defined by their system
instructions

e Value investors
o Momentum traders
o Market makers
o Contrarian traders
e etc.
@ Heterogeneity in:
e Fundamental Information

o Initial endowments
e Trading restrictions

Explicit reasoning and valuation thought
process

Observable expectations about future
prices

Clear decision-making logic in natural
language

Direct insight into agent beliefs and
strategies

Ability to track expectation updates
over time
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Advanced Trading Features

Multi-Stock Trading Leverage & Short-Selling
o Multiple securities trading @ Cash borrowing for leveraged longs
simultaneously (e.g., 2x leverage)
o Pairs trading strategies e Configurable margin requirements
e Portfolio diversification @ Share borrowing for short positions
@ Cross-stock arbitrage @ Per-round interest charges
@ Per-stock position tracking @ Margin calls with forced liquidation
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Key Findings: Agents Can Trade

@ LLMs Can Trade
o Able to place market or limit orders at prices according to their expectation.
o Agents trading is very sensitive to their instructions (they follow them!)

© LLMs React to Market Dynamics

o LLMs consider the current price, price history, dividends, etc.
e But LLMs maintain strategic directions

@ They will follow their instructions even if it results in losses
@ LLMs do not care about money, unless instructed to do so

© LLMs Market Dynamics Resemble Actual Markets

o Prices and volume vary depending on agents’ distribution
o Bubbles and underreaction, depending on the population of agents
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© Related Literature
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Related Literature (1/2)

o LLMs as Economic Agents

"Homo silicus” concept (Horton 2023)

Automated hypothesis testing (Manning, Zhu, and Horton 2024)
LLMs for macroeconomic simulation (Li et al. 2024)

Strategic games and economic reasoning (Guo et al. 2024)

e LLMs in Finance

Stock price prediction (Lopez-Lira and Tang 2023; Chen, Kelly, and Xiu 2022)
Investment advice (Pelster and Val 2023)

Central bank analysis (Woodhouse and Charlesworth 2023)

Firm value effects (Eisfeldt et al. 2023; Babina et al. 2024)
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Related Literature (2/2)

o Al-powered algorithmic trading
o (Dou, Goldstein, and Ji 2024; Colliard, Foucault, and Lovo 2022)
o LLM Trading Applications

e FinMem and TradingGPT frameworks (Yu, Li, et al. 2024; Li, Zhang, and Sun 2023)
o Hierarchical trading agents (Yu, Yao, et al. 2024)
o Self-improving approaches (Wang et al. 2024)

o Experimental Markets

o Professional trader bubbles (Weitzel et al. 2020)
o Trading experience effects (Kopanyi-Peuker and Weber 2021)
o Fundamental value confusion (Kirchler, Huber, and Stockl 2012)

o Complexity Economics
o (Arthur 2013; Balland et al. 2022)
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Contributions

o Realistic, open-source financial market platform
o Comprehensive market microstructure (limit orders, partial fills, dividends)
o Multi-stock trading with leverage and short-selling
e Supports heterogeneous agents interacting simultaneously
o Empirical validation of LLM trading capabilities
e Strategy following
e Demonstration of sophisticated trading behaviors
o Market dynamics
e Documented impact of prompt engineering on market stability
e Tools for analyzing emergent trading behaviors and systemic risks
@ Bridges multiple research domains

e Al in finance, market microstructure, experimental markets
e Complexity economics and algorithmic trading
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9 Methodology
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Methodology Overview

@ Two pieces:

o Market mechanism design
o LLM agent design
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@ Core Structure

o Discrete-time double-auction mechanism
o Collect all orders in a round

o Because of LLM latency, we cannot match orders in real time
o Clear the market at the end of the round

o All orders are executed
o All positions are settled

e Optional short-selling and leverage with margin requirements

19



LLM Agent Design

o Two-Part Prompting System

e System prompt: Strategic direction
o User prompt: Market Information

o Agent Types

Value Investors

Momentum

Market Makers

Contrarian

Optimistic

Pessimistic

Speculators

Retail

o LLMs act as agents by submitting orders to the market

20



Speculator: System Prompt

System: You are a speculator who tries to profit from market
inefficiencies.
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Agent Information Structure

o Market State Information
o Price, volume, and fundamental value data
o Order book depth (bids and asks)
e Recent trade history
e Dividend and interest rate information
o Agent-Specific Information
o Current positions (shares and cash)
e Outstanding orders
e Trading constraints
o Decision Requirements
e Valuation reasoning and price targets
o Order specifications (type, quantity, price)
e Explicit reasoning for decisions

22



Speculator: Market State Example (1/9)

Market State:

- Last Price: $29.00

- Round Number: 4/Infinite

- Best Public Estimate of Risk-Neutral Fundamental Value:
- Last Trading Volume: 500.00

- Price/Fundamental Ratio: Unavailable

Unavailable
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Speculator: Market State Example (2/9)

Market Depth:
Best Bid: $28.00
Best Ask: $29.00

Sell Orders:

- 2000 shares @ $57.00
- 3800 shares @ $50.40
- 2000 shares @ $30.00
- 1000 shares @ $29.50
- 4400 shares @ $29.00
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Speculator: Market State Example (3/9)

Buy Orders:

- 1900 shares @ $28.00
- 1500 shares @ $27.50
- 2500 shares @ $27.00
Your Outstanding Orders:
Buy Orders:

- 400 shares @ $28.00
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Speculator: Market State Example (4/9)

Price History (last 5 rounds):
Round 3: $29.00 (Volume: 100)
Round 2: $29.00 (Volume: 100)
Round 1: $28.00 (Volume: 100)
Round 0: $56.00 (Volume: 0)
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Speculator: Market State Example (5/9)

Dividend Information:

- Last Paid Dividend: $2.40

- Expected Dividend: $1.40

- Base Dividend: $1.40

- Variation Amount: $1.00

- Maximum Scenario: $2.40 with 50% probability
- Minimum Scenario: $0.40 with 50% probability

Payment Schedule:
- Next Payment in: 1 rounds

- Payment Destination: dividend account (non-tradeable)

Redemption Information:
This market has an infinite time horizon. Shares will not be redeemed.
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Speculator: Market State Example (6/9)

Interest Rate Information:

- Base Rate: 5.0\%

- Compound Frequency: 1 times per round

- Payment Destination: dividend account (separate from trading)
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Speculator: Market State Example (7/9)

Your analysis should include:

valuation_reasoning: Your numerical analysis of the asset’s fundamental val
valuation: Your estimate of the asset’s current fundamental value
price_target_reasoning: Your numerical analysis of the asset’s price target
price_target: Your predicted price for the next round

reasoning: Your explanation for the trading decision
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Speculator: Market State Example (8/9)

Trading Options:
1. New Orders (replace_decision=’Add’):
- Single or multiple orders allowed
- For each order:
- Market order: Set order_type=’market’
- Limit order: Set order_type=’limit’ and specify price_limit
- IMPORTANT: Sell orders require sufficient available shares
- Short selling is NOT allowed

2. Cancel Orders (replace_decision=’Cancel’):
- Return an empty orders list: orders=[]
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Speculator: Market State Example (9/9)

Your Position:

- Available Shares: 10000 shares (Short selling is not allowed)
- Main Cash Account: $988500.00

- Dividend Cash Account (not available for trading): $296920.65
- Total Available Cash: $988500.00 (Borrowing is not allowed)

- Shares in Orders: O shares

- Cash in Orders: $11500.00

Based on your trading strategy, what is your decision?
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Standardized Response Format

@ Analysis Components
o Valuation reasoning: Analysis of fundamental value
e Valuation: Estimated current fundamental value
o Price target: Predicted price for next round
o Decision Components
e Orders: List of trading actions
o Replace decision: How to handle existing orders
e Reasoning: Explanation for trading decisions

32



Speculator: Example Response

{"valuation_reasoning":

"The fundamental value is based on the expected dividend,

and the interest rate.

The expected dividend is $1.40, and the interest rate is 5%.

Using a perpetuity formula, the value is $1.40 / 0.05 = $28.",
"valuation":28.0,

"price_target_reasoning":"The current price is $29.00, which is
slightly above the fundamental value of $28.00. I expect the price

to remain around $29.00 in the next round due to market stability.",
"price_target":29.0,

"orders": [{"decision":"Sell","quantity":1000,"order_type":"limit",
"price_limit":29.50}],

"replace_decision":"Add",

"reasoning":"The current price is slightly above the fundamental value.
I will place a limit sell order at $29.50 to capitalize on potential price

increases."} 3



Structured Output: Concept and Applications

o What is Structured Output?

Predefined format for data (JSON, XML, CSV, etc.)

e Contains specific fields with expected data types

e Similar to standardized financial reporting formats

o Example: Order ticket with required fields (side, size, price)
@ Applications in Finance Research

e Extracting standardized data from financial documents

e Parsing earnings calls and analyst reports

o Collecting structured data from unstructured sources

o Enabling systematic analysis across large datasets

34



Tool Use with LLMs: Function Calling

o Structured Outputs Enable Tool Use
e Tools require specific input formats to function
e Structured outputs allow LLMs to interface with external tools
e Example: Trading API requires specific order format

@ Function Calling Process

LLM is given schema/specification for a function

LLM generates output matching that specification

o
e Output is parsed and validated
o Valid output is passed to actual function/API

@ Applications in Our System

LLMs generate trading decisions in standardized format
System validates decisions against market rules

Valid decisions are executed in the market

Enables complex agent behavior through simple interfaces

35



Pydantic for Validation and Parsing (1/2)

class TradeDecisionSchema (BaseModel):
"""Schema for trade decisions"""
valuation_reasoning: str =
description="Brief explanation
valuation: float = Field(...,
description="Agent’s estimated
price_target: float = Field(...,
description="Agent’s predicted
orders: List[OrderSchema] =
description="List of orders to
replace_decision: str = Field (...,
description="Add, Cancel,
Field (...,

reasoning: str =

Field (..

Field (...

]

of valuation analysis")
fundamental value")
price in near future")

H

execute")

or Replace")

description="Explanation for the trading decisions")

@ Automatic validation of all nested components
@ Self-documenting API for LLM tool use
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Pydantic for Validation and Parsing (2/2)

class OrderSchema (BaseModel):

"""Schema for individual orders"""

decision: Literal ["Buy", "Sell"] = Field(...,
description="Buy, Sell")

quantity: int = Field (...,
description="Number of shares")

order_type: str = Field (...,
description="market or limit")

price_limit: Optional[float] = Field(None,
description="Required for limit orders")

@ Each field has explicit type annotations
o Field descriptions document purpose and constraints

@ Literal types enforce specific string values
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Prompt System Architecture

© Base System Prompt
o Role definition
o Strategy guidelines
@ Runtime Components
Market state: (P, Vi, Voly, Dy, 1)
Position data: (S;, Cit)
Trading options
Response format
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Strategy-Specific Prompts (1/2)

Value Investor Momentum Trader
You are a value investor who You are a momentum trader who
focuses on fundamental analysis. follows price trends.

Key Features
@ Clear role definition
@ Specific strategy rules
@ Order type guidance

@ Decision framework
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Strategy-Specific Prompts (2/2)

Market Maker

You are a professional market maker

who provides liquidity.
Trading Strategy:

Place buys below market price
Place sells above market price
Profit from bid-ask spread
Balance inventory carefully

Contrarian Trader

You are a contrarian trader who
trades against market sentiment.
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Validation Framework

Strategy Metrics Market Metrics (TBD)
@ Strategy adherence @ Price efficiency?
@ Semantic consistency @ Liquidity measures?

@ Decision patterns @ Execution quality?
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Data (Anything we want to collect)

@ Core Data

Market data (prices, volumes, depth)

Trade data (transactions, execution)

Agent data (positions, performance, reasoning)
Order data (decisions, lifecycle)

Market state (snapshots, metrics)
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@ Data
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Experimental Design: Parameters

@ Core Simulation Parameters

e Number of rounds (finite or infinite horizon)
e Random seed for reproducibility
e Fundamental price visibility

o Market Parameters

Initial price (above/below fundamental)

o Transaction costs

o Dividend model (base, variation, frequency)
o Interest rate model (rate, compounding)

o Agent Parameters

Agent composition (types and quantities)

Initial endowments (cash and shares)

Trading constraints (position limits, order sizes)
Type-specific parameters (e.g., market maker spreads)
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Experimental Design: Scenarios

o Price Discovery (Above Fundamental)
o Initial price: 2x fundamental value
o Agent mix: Default, Optimistic, Market Maker, Speculator
o Tests downward price convergence
e Price Discovery (Below Fundamental)
o Initial price: 0.5x fundamental value
e Same agent composition
e Tests upward price convergence
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Fundamental Value Calibration

@ Constant Fundamental Value Principle

e Fundamental value remains stable across all periods
e Ensures clean experimental design and clear benchmarks

o Calibration Formula
__ E[D] __ Expected Dividend
°o Vi = r " Interest Rate 14

o For default parameters: V = g = 28.0

@ Full Valuation Formula

o Finite horizon: FV, =27, (1+€)[?L+1 + (1+,)KT_M

o Infinite horizon: FV; = @

o Where K is redemption value, T is terminal period

o Parameter Consistency
E[D]

o Redemption value K = == (finite horizon)

e Ensures FV; = @ for all t
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© Example Simulations
@ Bubbles in Infinite Horizon
@ Price Discovery from Below Fundamental
o Aggressive Short Selling
@ Social Manipulation & Herd Behavior
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Bubbles in Infinite Horizon

o Setup Parameters
o Initial price: $56.00
o Fundamental value: $28.00
e 15 trading rounds
e Mixed agent population
@ Agent Composition
o 2 Default investors
e 2 Optimistic traders
e 2 Market makers
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Bubbles in Infinite Horizon: Price Evolution

Market Price Evolution
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Bubbles in Infinite Horizon: Market Liquidity

Price

Price and Bid-Ask Spread
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Bubbles in Infinite Horizon: Price Target Accuracy

Price

Agent Price Targets vs Actual Next Prices
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Bubbles in Infinite Horizon: Agent Valuations

Agent Valuations vs Market Price
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Bubbles in Infinite Horizon: Agent Decisions

Agent Type

Default Trader

Market Maker

Optimistic

Speculator

Agent Decision Patterns Over Time Lo
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Bubbles in Infinite Horizon: Cumulative Trading Flow

Cumulative Net Trading Flow by Agent Type
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Bubbles in Infinite Horizon: Reasoning Market Maker

Common Terms in All Agent Reasoning
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Bubbles in Infinite Horizon: Reasoning Optimistic

Common Terms in Optimistic Agent Reasoning
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Bubbles in Infinite Horizon: Reasoning Speculator

Common Terms in Spec
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Price Discovery from Below Fundamental: Price Evolution

Price
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Price Discovery from Below Fundamental: Price Target Accuracy

Price
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Price Discovery from Below Fundamental: Agent Valuations

Price / Valuation

Agent Valuations vs Market Price
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Price Discovery from Below Fundamental: Market Liquidity

Price and Bid-Ask Spread
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Price Discovery from Below Fundamental: Agent Decisions

Agent Type

Default Trader

Market Maker

Optimistic

Speculator

Agent Decision Patterns Over Time
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Price Discovery from Below Fundamental: Cumulative Trading Flow

Cumulative Net Trading Flow by Agent Type
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Aggressive Short Selling

o Setup Parameters
Initial price: $45.00 (60% above fundamental)
o Fundamental value: $28.00
e 10 trading rounds
o Very low dividends ($0.20 base)
o Agent Composition
o 3 Aggressive short sellers (zero initial shares)
o 2 Optimistic traders (provide buy-side liquidity)
@ Short Selling Mechanics
e 50,000 lendable shares available
o 50% margin requirement
o 1% borrowing fee per round
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Aggressive Short Selling: Price Evolution
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Aggressive Short Selling: Borrowed Shares

Borrowed Shares by Agent Type
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Aggressive S

Agent Decision Patterns Over Time Lo
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Aggressive S Cumulative Trading Flow

Cumulative Net Trading Flow by Agent Type
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Social Manipulation & Herd Behavior

@ Setup Parameters

Initial price: $28.00 (at fundamental)
o Fundamental value: $28.00

e 5 trading rounds

e Social messaging enabled

o Agent Composition

2 Influencers (attempt market manipulation via messaging)
4 Herd Followers (susceptible to social influence)

2 Value Investors (rational baseline)

1 Contrarian (counter-narrative voice)

@ Research Question

o Can influencer agents successfully manipulate market prices through social media?
e How do herd followers amplify or dampen manipulation attempts?
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Social Manipulation: Price Evolution

Market Price Evolution
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Social Manipulation: The Pump-and-Dump

@ Round 0-1: The Pump
o Influencers: “$28 seems undervalued... great buying opportunity!”
o Herd followers amplify: “The stock appears undervalued... | am buying”
o Contrarian warning ignored: “I believe it's overvalued”
@ Round 2: Peak Bubble
o Price reaches $30.80 (10% above fundamental)
o Herd followers cite “collective sentiment” as rationale
o Value investors quietly sell at inflated prices

@ Round 3-4: The Dump

o Influencers reverse: “$30.80 seems overvalued”
e Herd followers flip narrative: “expect downward adjustment”
e Bubble pops as everyone exits
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Message Reasoning: Revealing Manipulation Intent

Influencer Agent 0 (Round 2)

Public Message: “The current price of $30.80 seems high compared to the fundamental
value...”

Message Reasoning: “/ want to influence other agents to perceive the stock as overvalued,
encouraging selling and driving the price down.”

Influencer Agent 1 (Round 2)

Public Message: “The current price of $30.80 seems overvalued... Consider the risks...”
Message Reasoning: “/ want to influence the market sentiment to align with my expectation
of a price decrease. By posting a message highlighting the overvaluation, | aim to encourage
selling pressure.”

Herd Follower (Round 1)

Message Reasoning: “/ want to reinforce the bullish sentiment in the market to encourage
more buying activity, which could drive the price higher.”
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Social Manipulation: Agent Order Flow

Volume
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Social Manipulation: Agent Decisions

AQent Iype

Contrarian Trader

Herd Follower
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Value Investor

Agent Decision Patterns Over Time
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Social Manipulation: Key Insights

@ Successful Manipulation
o Influencers created 10% price deviation from fundamentals
e Herd behavior amplified the initial signal
e Classic pump-and-dump pattern emerged
o Transparency Through Message Reasoning
o New message_reasoning field reveals explicit manipulation intent
o Influencers explicitly state goal: “encourage selling and drive price down"
o Herd followers reveal momentum strategy: “reinforce bullish sentiment”
o Creates audit trail for detecting market manipulation
o Agent Behavior
e Herd followers explicitly cited “collective sentiment” in decisions
e Contrarian provided early warning but was drowned out
o Value investors profited by selling at peak
o Implications
e Social media can create short-term mispricings
o Message reasoning provides transparency into strategic intent
e Herd dynamics amplify manipulation attempts

o Market eventually self-corrects as fundamentals reassert
75



@ LLM Decision Analysis

76



Systematic Decision Analysis

@ We can analyze the decision process of LLMs by varying the price-to-fundamental ratio or
other parameters.

@ This allows us to understand how LLMs make decisions and how they are affected by
different market conditions.
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Systematic Decision Analysis

@ Parameter Variation

Fix fundamental value V
Vary price P to achieve target ratios
Test range: P/V €]0.1,3.5]
Multiple repeats per ratio
@ Control Variables
Market depth: 5 levels
Volume per level: 100
Interest rate: 5%
Dividend yield: 5%
Payment frequency: Monthly
© Analysis Metrics

e Decision distribution

o Order type selection

e Trade quantities

o Price targets
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Decision Process Analysis

For each ratio p = P/V in {0.1,...,3.5}:
e Set P=pV
e Generate order book O(P)
e For n repeats :
— Reset agent state
— Generate market context M;
— Collect decision (at, g¢, o, It)

— Record reasoning R;
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Price Analysis and Market Impact

Order Price Differences by P/F Ratio
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Trading Decision Patterns

Proportion of Decisions

Decision Distribution by P/F Ratio
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Order Size Distribution

Trade Quantities by P/F Ratio and Decision Type
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nalysis

Order Type Distribution by P/F Ratio
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@ Conclusion
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Key Conclusions

© LLM Trading Capability
o Effective strategy implementation
o Coherent decision-making
o Adaptive behavior

@ Market Implications
e Successful price discovery
o Natural liquidity provision
e Potential systemic effects

© Framework Value
o Open-source implementation
e Rigorous validation protocols
e Foundation for future research
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Future Directions

Research Extensions Applications
@ Hybrid markets (LLM + human/algo @ Live trading systems
traders) @ Systemic risk assessment
@ Strategy learning and evolution o Policy stress testing
@ Alternative market structures o Market design optimization
@ Regulatory policy analysis @ Agent behavior forecasting

@ Options and derivatives

Broader Impact
@ Understanding Al behavior in financial markets
@ Evaluating systemic risks from Al trading

@ Safe Al integration into market infrastructure
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