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This Paper

Asset pricing for U.S. corporate bonds

• U.S. corporate bonds are large asset class
• 11.2 trillion USD outstanding as of Q3 2024 (SIFMA)

→ Assemble unique dataset that contains bond returns, macro
fundamentals, individual bond characteristics, issuer
fundamentals, equity returns

Estimates SDF in tradable asset space via machine learning

• Deal with large amount of conditioning information (more than
240 time series!)

• Allow for flexible functional form of the SDF
• Contrast estimation using minimization of mispricing loss and

maximization of Sharpe ratio
→ SDFs for both bond portfolios and individual bonds
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Summary

Bond portfolios:

• Annual out-of-sample Sharpe ratios between 0.76 and 0.87
• Incorporation of macro time series → higher Sharpe ratios &

lower maximum drawdown
• SDF portfolio shows statistically significant excess returns w.r.t.

the S&P500, Fama French 3 and 5 factor models
• Little variation between mispricing-loss and Sharpe ratio

maximization
Individual bond returns:

• Annual out of sample Sharpe ratios between .41 and 1.00
• Annual excess return of 12% (t-stat of 3.04) vis-a-vis the

S&P500, 12% (t-stat of 2.50) against FF 5 factor model
• Mispricing-loss provides higher cross-sectional and time series

predictability, but Sharpe ratio maximization yields better
portfolio performance
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Data Sources

• Individual Bond Returns

• Panel of clean corporate bond prices between February 1973 and
January 2020 (Elkamhi et al., 2021)

• Four main data sources: Lehman Brothers Fixed Income Database,
the Mergent FISD/NAIC Database, TRACE, and DataStream

• Bond Portfolio Returns

• 40 bond portfolios constructed by Elkamhi et al. (2021)
• Sorted based on credit spreads, intermediary capital exposure,

credit rating, downside risk, maturity, idiosyncratic volatility,
long-term reversals, etc.

• Macroeconomic time series

• Monthly time series data obtained from the FREDMD database
(McCracken and Ng, 2016)

• Six additional time series from Welch and Goyal (2007)
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Data Sources

• Bond issuance and issuer matching

• Combination of Mergent FISD, S&P rating file, and Capital IQ
identity file

• Developed iterative name matching algorithm to establish
ambiguous matches

• Issuer fundamentals and equity characteristics

• Issuer fundamentals from Compustat
• Includes total assets, cash position, cash flow information and

profitability indicators, etc.
• Market based characteristics

• Use established cross-walk between Compustat and CRSP
• Share price, shares outstanding and derived variables as market

capitalization and market-to-book ratios
• CAPM and Fama-French 3-factor estimates on factor exposure,

alpha, and idiosyncratic volatility from the WRDS Beta Suite
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Estimation Approaches

Goal: Estimate the stochastic discount factor in the the space of tradable
assets
We use two approaches as candidate objectives:

1 Approach 1 - Minimizing mispricing-loss (MP-min): The
SDF is defined by the conditional moment restriction implied by
no-arbitrage. We minimize the loss over all deviations from the
moment condition.

2 Approach 2 - Maximizing Sharpe ratio (SR-max): Using the
property that the projected SDF into the space of traded assets
exhibits the highest Sharpe ratio, we maximize the Sharpe ratio of
the SDF portfolio.
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Approach 1: No Arbitrage and Mispricing Loss

No arbitrage implies a conditional moment restriction of the following form
(Cochrane, 2009):

Et[Mt+1Re
t+1] = 0, (1)

Mt+1 is the stochastic discount factor, Re
t+1 is the excess return of the

asset over the risk-free rate, and Et is the expectation with respect to the
time t information set.
We consider a linear SDF with a single risk factor of the following form
Mt+1 = 1 ↑ ωT

t Re
t+1.

Empirical loss:

1
N

N∑

i=1

|Ti|
T

∥∥∥∥∥∥
1

|Ti|
∑

t→Ti

(
1 ↑ ω(zt,·) · Re

t+1
)

Re
t+1,i

∥∥∥∥∥∥

2

(2)

→ Estimate the weights ωt, that minimize the mispricing loss.
→ Provides tradable SDF portfolio!
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Approach 2: Maximizing Sharpe Ratio

Linearized Sharpe ratio:

• Fractional definition of the Sharpe ratio problematic
• Use a linear version of the Sharpe ratio during training
• The linear version of the Sharpe ratio still balances the first and

the second moment of the return distribution
Concretely, we use the following linearized Sharpe ratio:

SR
(
Re

t+1, ω(zt,·)
)

= t-series-mean
(
ω(zt,·) · Re

t+1
)

↑ ε ↓ t-series-stdev
(
ω(zt,·) · Re

t+1
)

(3)

• ε can be interpreted as a parameter of risk-aversion that controls
the relative importance of the mean and the standard deviation of
the distribution; similar to Guijarro-Ordonez et al. (2021)

• Use constant ε = 0.01
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Bond Portfolio Model Results

• The best model achieves a monthly Sharpe ratio of 0.25 (annual
Sharpe ratio of 0.87).

• Little di!erence in Sharpe ratios using the Sharpe ratio
maximization vis-a-vis the mispricing-loss.

• Omission of macro time series leads to overall worse performance
→ lower Sharpe ratio, Sortino ratio, and lower statistical
significance for the excess returns. Higher maximum drawdowns,
and higher leverage

Models
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Bond Portfolio Model Results

• Significant excess returns vis-a-vis the FF3 factors, marginally
significant against FF5 and significant returns against S&P500.

• Excess returns are of magnitude 0.1% at a monthly basis, or 1.2%
annually.

• While similar magnitude, statistical significance lower when
estimated with the linearized Sharpe ratio.

• Weaker results when omitting the macro time series as
conditioning information from the model.
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Individual Bond Results

• The best performing model with individual bonds achieves a
monthly Sharpe ratio of 0.29, or annual Sharpe ratio of 1.00.

• Maximizing the Sharpe ratio performs overall better than
minimizing the mispricing loss in terms of Sharpe and Calmar
ratios in the test set.

• Sharpe ratio maximization leads to higher CAGR, together with
higher and more significant excess returns.

• Best model omits macro-ts but lower Sortino ratio and higher
drawdowns than under inclusion.

• Results robust to the exclusion of financials and REITs.
Models
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Individual Bond Results
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Individual Bond Results

Specification with the highest Sharpe ratio yields:
• monthly excess returns of 1.0%, 12.0% annually, vis-a-vis the

S&P 500 (t-statistic of 3.040)
• Against the FF5 benchmark: monthly excess return remains close

to 12.0% (t-statistic of 2.500)
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Individual Bond Results

• SDF portfolio estimated using Sharpe ratio maximization
performs typically better in terms of portfolio performance, but
less well for predictability.

• Minimizing the mispricing loss leads often to substantial increases
in the explained variation and the cross-sectional R2.

• We do not observe this di!erence for bond portfolios.
→ Mispricing loss better for data with a lot of idiosyncratic variation
→ Sharpe ratio maximization shows better alignment with portfolio

performance.
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Conclusion

• We build on recent advances in data availability and machine
learning to estimate asset pricing models for the U.S. corporate
bonds market.

• Use two approaches: minimization of mispricing loss and
maximization of the linearized Sharpe ratio.

• Sharpe ratio maximization better out-of-sample portfolio
performance and excess returns.

• Mispricing loss yields higher predictive performance for samples
with idiosyncratic variance.

• In comparison to conventional linear AP models, non-linear
methods lead to smaller pricing errors, higher Sharpe ratios and
more variance explainability.
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Bond Portfolios - Best Models for SDF estimation

Environment Best model

Objective Data Architecture bs lr l2reg l1reg

MP Ind. + Bond + Macro Model 1 256 0.005 0.001 none

SR Ind. + Bond + Macro Model 3 256 0.005 none none

MP Ind. + Bond Model 2 256 0.001 0.001 none

SR Ind. + Bond Model 2 512 0.001 none 0.001

Notes: The best model describes the architecture, batch size (bs), learning rate (lr) and

the l1 (l1reg) and l2 (l2reg) regularization for the model that obtained the highest

Sharpe ratio in the validation set.

Back
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Individual Bonds - Best Models for SDF estimation

Environment Best model

Objective Data Exclusions Architecture bs lr l2reg l1reg

MP Ind. + Bond + Macro Model 1 1024 0.0001 none 0.001
SR Ind. + Bond + Macro Model 3 512 0.0001 none 0.001
MP Ind. + Bond Model 4 512 0.005 0.001 none
SR Ind. + Bond Model 4 2048 0.005 0.001 0.001
MP Ind. + Bond + Macro No financials Model 1 1024 0.0001 none 0.001
SR Ind. + Bond + Macro No financials Model 3 512 0.0001 none 0.001

Notes: The best model describes the architecture, batch size (bs), learning rate (lr) and

the L1
(l1reg) and L2

(l2reg) regularization for the model that obtained the highest

Sharpe ratio in the validation set.

Back
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Sample - Bond Portfolios

value
# of macro variables 126
# of Goyal-Welch Variables 6
# of median time series fundamentals 41
# of forward spreads 10
# return characteristics 9
# of portfolios 40
Sample start October 1978
Sample end December 2018

Table: Summary Statistics Bond Portfolio Dataset
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Sample - Individual Bond Returns

value
# of firm fundamentals 41
# of macro variables 126
# of Goyal-Welch Variables 6
# of industry dummies 10
# of bond characteristics 9
# of forward spreads 10
# of median time series fundamentals 41
# securities 10,715
# issuers 1,922
Sample start February 1973
Sample end January 2020

Table: Summary Statistics Individual Bond Return Dataset
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Individual Bond Returns - Sample Composition

(a) Sample as Share of S&P 500 (b) Fraction of the Sample in S&P 500

• Our sample accounts for 30% or more of the market
capitalization, and approximately 30% of the number of firms in
the S&P500, ex. ’98-’01.

• 60%-80% of all bonds in our sample are issued by firms which are
part of the S&P 500.
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Sample Splitting

We divide our sample into training, validation, and test set.
Individual bond returns:

• We have a total of 560 dates (February 1973 - January 2020)
• first 236 dates as part of our training set (↔ 40%)
• next 156 for the validation set (↔ 30%)
• the remaining 168 dates for the test set (February 2006 to

January 2020) (↔ 30%)
Bond portfolios:

• Total of 437 dates (October 1978 - December 2018)
• first 183 dates in the training set (↔ 40%)
• next 122 dates in the validation set (↔ 30%)
• remaining 132 dates in the test set (August 2008 to December

2018) (↔ 30%)
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Data Management

Unbalanced longitudinal dataset

• Firms enter and exit public markets → turnover for datasets with
a long sample horizon

• Worse for bonds: bonds have a varying maturity between 3 to 7
years

Possible Workaround: Expand the sample with unknown values to create
a balanced longitudinal dataset

• Increases the hardware requirements and the need for
parallelization due to memory constraints → noisier gradients

Our Workaround: Augment data with a double index: asset x time
• Processes the dates sequentially and calculates loss for data batch
• Able to estimate all models on single A100 GPU with 40GB

memory
• Allows to use the batch size as a varying hyperparameter for

training the neural network architectures
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Model Architectures

Use machine learning to model portfolio weights:

ω(zt,·)

Four candidate architectures:

1 Model 1 - Shallow FFN: hidden units = [64,32,16,8]
2 Model 2 - Deep FFN: hidden units = [64,64,32,32,16,16,8,8]
3 Model 3 - Deeper FFN: hidden units =

[64,64,64,32,32,32,16,16,16,8,8,8,4]
4 Model 4 - Elastic Net: hidden units = [1].
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Other Optimization Considerations

• Activation Function We chose SiLU as activation function.
• Optimizer We use the Adam optimizer (Kingma and Ba (2015)),

with learning rates of 0.0001, 0.001, and 0.005.
• Batch size We use batch sizes of 256, 512, 1024, and 2048 as

hyperparameter.
• L1

-regularization and L2
-regularization with ["none", 0.001,

0.01, 0.1] as penalty hyperparameter.
• Early stopping with a stop after 8 periods of non-improvement

in the validation phase.
• Dropout with probability of 0.01.

→ Model and hyper-parameter space create a large candidate space
of 768 possible combinations.

→ Search over in the validation phase to decide on the best
architecture and hyperparameters.
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Leverage Constraint

SDF portfolio weights and leverage:

• L1-norm of SDF portfolio weights measure amount of leverage of
strategy

• Without constraints, SDF portfolio assume large positive and
negative values, implying large amount of leverage.

→ We impose additional leverage constraints via regularization.
Leverage constraint trade-o!s:

• The L1-norm measure the amount of leverage of a portfolio
directly. L1-norm typically implies much more concentrated
portfolios, with some larger weights and lots of smaller weights.

• L2-norm favors more diversified portfolio. However, re-balancing
across positions imposes larger trading cost.
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Leverage Constraint

The following inequality holds:

↗ω↗1 ↘
≃

n↗ω↗2.

Hence, a bound of C on the L2-norm can translate to a varying amount of
leverage of the SDF on the date level, depending on how many dates are
present in the batch.
Leverage constraint choice:

• Use an upper bound for the L2-norm of Cport = 1 for bond
portfolios. This leads to a maximum leverage in the range of 0.8
to 2.5.

• For individual bonds, we chose a bound that allows for maximum
leverage between 2 and 7.
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Model evaluation

Portfolio Performance:

• Sharpe ratio
• Sortino ratio
• Calmar ratio
• Cumulative annual growth rate (“CAGR”)
• Maximum drawdown
• Mean-, and max-leverage

Excess Returns:

Evaluate portfolio returns against commonly used benchmarks in the asset
pricing literature for equities:

• S&P 500 index,
• Fama-French 3 factor model (Fama and French (1993)),
• Fama-French 5 factor model (Fama and French (2015)).
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Model evaluation

Out-of-sample predictability measures:

• Adopting average predictability over the cross-section, or over
time from Chen, Pelger, and Zhu (2023)

• Explained variation is the R2 of a cross-sectional regression on
the loadings; this is a time-series R2:

EV = 1 ↑
1
T

∑T
t=1 cross-sec-mean

(
ϑ2
t

)

1
T

∑T
t=1 cross-sec-mean

(
(Re

t )2
) . (4)

• Cross-sectional R2 is the average pricing error, divided by the
average return; this is a cross-sectional R2:

XS-R2 = 1 ↑
1
N

∑N
i=1

Ti
T (t-series-mean (ϑi))2

1
N

∑N
i=1

Ti
T (t-series-mean (Ri))2 . (5)
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