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Abstract

We estimate an asset pricing model for the U.S. corporate bonds market using bond portfolios, as

well as a large longitudinal dataset of individual bonds that we augment with fundamental charac-

teristics of the issuer. We further enrich the information set with a large set of macroeconomic time

series. We estimate diverse model architectures with two approaches: (1) minimizing the mispricing

loss, and (2) maximizing the Sharpe ratio. We find that, contrary to the equivalence of these two ap-

proaches in the sense of financial theory, maximizing the Sharpe ratio performs better for individual

bonds, whereas the difference is smaller for bond portfolios. The out-of-sample annual SDF portfolio

Sharpe ratios are in the range of .59 to 1.00, and show statistically significant excess returns (alphas)
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1 Introduction

Empirical asset pricing for fixed income has traditionally focused on treasury bonds (Cochrane and Piazzesi

(2005), Ludvigson and Ng (2009), Bianchi et al. (2021)). U.S. corporate bonds constitute another asset class

for fixed income investors. The Securities Industry and Financial Markets Association (SIFMA) estimates

a total volume of 10.3 trillion USD outstanding as of Q4 2022. To put this in perspective, the outstanding

volume is comparable to the overall mortgage debt in the United States or about half of all debt issued by

the U.S. federal government. Despite its size, few studies have examined its return characteristics; some

notable exceptions in recent years are Nozawa (2017), Elkamhi et al. (2020), Bali et al. (2021), and He et al.

(2021).

This paper estimates asset pricing models for corporate bonds in an environment with a large amount

of conditioning information. Hence, the model has to fulfill two tasks: (i) efficient dimensionality reduction

and (ii) asset pricing. We use the flexibility offered by neural network architectures to estimate the SDF

by modeling the portfolio weights of the SDF on the tradable asset space via neural networks. We contrast

these flexible models with conventional approaches that postulate linearity of the SDF in its pricing factors.

In comparison to equity prices and returns, information on corporate bonds have been historically scarce.

Our first contribution is the construction of a large longitudinal dataset of individual bond returns and

fundamental information of the respective issuer, combining individual bond returns (Elkamhi et al., 2021)

with comprehensive bond characteristics, detailed issuer fundamentals, and a large set of macroeconomic

time series (McCracken and Ng, 2016), as well as, extended time series as described in Welch and Goyal

(2008). In the process, we develop an original algorithm that merges bond returns and information from

corporate financial reports (fundamentals). In addition, we build on the work of Elkamhi et al. (2020)

and use characteristics sorted bond portfolios. This approach is closer to the approach in the asset pricing

literature that works on the level of portfolios (Fama and French, 1993b, 1995, 2012, 2015b) than on the

level of individual securities. Only recently, with the advancement in methodology we have seen more studies

that directly price individual securities (Chen et al., 2023; Freyberger et al., 2020a; Gu et al., 2020).

For bond portfolios we obtain annual out of sample Sharpe ratios between 0.76 an 0.87 depending on

the data environment and model objective. We find that models that incorporate a broad set of macro

time series perform better, with both higher Sharpe ratios and lower maximum drawdown. The maximum

leverage of the SDF portfolio remains modest at 1.15 for the model with the highest Sharpe ratio. The

portfolios show modest but statistically significant excess returns via commonly used risk factors, including

the S&P500, Fama French 3 and 5 factor models. Even in terms of predictability, we find explained variation

of 64% and cross-sectional R2 of 88%.

Asset pricing for individual securities, in our case individual U.S. corporate bonds, has traditionally

been challenging because of the large idiosyncratic noise and the dimensionality of the data. Our model

architectures allows to estimate the weights on the tradable asset space flexibly. Despite these challenges, we

obtain annual out of sample Sharpe ratios between .41 and 1.00. Thus, the best model surpasses even the

best Sharpe ratio on the bond portfolios. The individual bond data have many advantages over the more

aggregated portfolio level data. In particular, it allows for the augmentation of the information set with

individual bond level characteristics and a large set of issuer characteristics. This additional information

allows for a more targeted asset allocation. In addition, the flexibility of the model to allocate across each

individual asset in a flexible way provides greater opportunity for diversification. The model with the highest

Sharpe ratio takes on more leverage than in the bond portfolio data. At maximum, the SDF portfolio has

a leverage of 4.29. This is also reflected in the higher maximum drawdown which is 29% for the portfolio.
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While the Sharpe ratio is associated with a higher volatility, the excess returns with respect to commonly

used risk factors are substantial in magnitude and highly statistically significant. The strategy has an annual

excess return of 12% vis-a-vis the S&P500 and a t-stat of 3.04. Even against the more demanding Fama-

French 5 factor model, the strategy obtains an annual excess return close to 12% and a t-stat of 2.50. The

model with the best Sharpe ratio obtains explained variation of 12% and cross-sectional R2 of 18%. This is

comparatively low to other models that minimize the mispricing loss, which achieve explained variation of

up to 23% and cross-sectional R2 of up to 45% but generally show lower Sharpe ratios.

There are several more general insights from the model estimation in diverse data environments and

objective functions for training. We find that, despite equivalence in theory, maximizing the Sharpe ratio

performs typically better than using the mispricing loss for individual bonds, as shown by the respective

out-of-sample Sharpe ratios and compounding annual growth rates (CAGR). For predictability, however, we

find that training the model with mispricing loss typically results in higher explained variation and cross-

sectional R2 for individual bonds. Relatedly, we generally find higher and more significant excess returns

by maximizing the Sharpe ratio as objective function than minimizing the mispricing loss. This was an

unexpected result, as there is ex-ante, no reason to expect a divergence. Intuitively, the mispricing loss is

more closely aligned with explaining the variation in returns than maximizing the Sharpe ratio and vice

versa. For bond portfolios, Sharpe ratio maximization and mispricing loss deliver comparable out-of-sample

Sharpe ratios and excess returns. In terms of predictability, Sharpe ratio maximization performs somewhat

better than mispricing loss minimization for bond portfolios.

Another interesting result is that predictability, as measured by explained variation and cross-sectional

R2, always falls without macroeconomic time series. We do not observe this monotonicity for out-of-sample

Sharpe ratios, sometimes we even find slightly higher Sharpe ratios when excluding the macroeconomic time

series.1 Interestingly, the exclusion of macroeconomic time series typically results in higher drawdowns,

suggesting that macro information is able to predict market downturns and correspondingly low returns.

This is complementary to the fact that the exclusion of macro time series often results in higher maximum

leverage. This partly, but not entirely, explains the higher volatility and the larger drawdowns when excluding

macroeconomic time series.

In comparison to the results of the conventional literature, we contrast our results to a pricing kernel

that is linear in yield and macroeconomic factors for 40 bond portfolios estimated via general methods of

moments (GMM). The specification mirrors the one of Cochrane and Piazzesi (2005) and Ludvigson and Ng

(2009) in the treasury bond market. We find that our approach performs better relative to the conventional

approach: the Sharpe ratios of the estimated SDF through linear methods are an order of magnitude smaller,

and a Diebold-Mariano test comparing the pricing residuals from the SDF estimated via neural networks,

with the residuals from predictive regressions returns highly significant negative Diebold-Mariano statistics.

Finally, to complement the results of our neural network approach, we estimated ex-post a hidden Markov

model (HMM) on the bond portfolios. The aim is to understand the evolution of regimes for the U.S.

corporate bond market with return data independent from the ones estimated through neural networks. We

find three distinct well-defined market states: a state with high volatility and relatively high positive returns,

a state with low volatility and low but positive returns, as well as a state with high volatility but negative

returns. During the time period in our validation and test set, the dominant market regime is one of low

volatility and low but positive returns.

1This result may not survive a greater hyperparameter and architecture search than the one included in the paper.
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Relation to existing literature. The paper connects to four main strands of the literature. First, there

is a rich literature on asset pricing in the (treasury) bond market. Fama and Bliss (1987), Cochrane and

Piazzesi (2005) and Cochrane and Piazessi (2008) show that forward rates predict excess returns. Cochrane

and Piazzesi (2005) and Cochrane and Piazessi (2008) show that a single factor—a convex combination of

forward rates—has strong predictive power with an R2 of up to 0.44 in the treasury bond market. Ludvigson

and Ng (2009) further shows that additional macroeconomic factors which are extracted from a large set of

macroeconomic time series increases the explanatory power in the treasury bond market marginally. Bianchi

et al. (2021) shows that neural networks and extreme trees increase the predictive performance for bond

excess returns. The paper finds higher predictive R2 than Cochrane and Piazzesi (2005) and Ludvigson

and Ng (2009) which the authors attribute to the better information processing and the ability to capture

important non-linearities by the new set of statistical methods. Our paper replicates the specifications of

Cochrane and Piazessi (2008) for corporate bond portfolios and finds R2s that are much smaller. In contrast

to the treasury market, the addition of macroeconomic factors which are derived with a static factor model

as in Ludvigson and Ng (2009) increases the explanatory power of expected excess returns substantially.

After the inclusion of macroeconomic factors, the R2 is comparable in magnitude to the full specification of

Ludvigson and Ng (2009) in the treasury bond market.

Second, there is a nascent literature that studies asset pricing in the (corporate) bond market. Culp

et al. (2018) and Nozawa (2017) construct a micro-dataset on corporate bonds. Nozawa (2017) decomposes

the yield spread into expected excess returns and expected credit losses. He finds that the variation in

the yield spread originates about half from the volatility of the implied long-run expected credit loss, with

the remainder coming from the volatility in the risk premium. Our paper differs from Nozawa (2017) as

our focus is not investigating the predictability of excess returns. Elkamhi et al. (2020) tests whether a

long-run risk model can account for the observed risk premia on 40 bond portfolios—the test assets. The

authors find that a one-factor model based on long-run consumption growth matches the risk premiums on

portfolios with moderate risk aversion parameter. Bali et al. (2021) use the implied relationship between

expected bond and equity return from a Merton (1974) credit risk model to predict cross-sectional bond

returns. He et al. (2021) use a set of machine learning techniques to estimate cross-sectional excess returns,

using 20 macroeconomic predictors, 20 corporate bond characteristics, and 20 equity characteristics in the

information set. The authors find evidence for out of sample predictability with cross-sectional R2 of up to

8% for subsets of their sample.

Third, there is a growing literature that uses tools in machine learning for asset pricing. Gu et al. (2020)

provides a comparative analysis of machine learning methods for empirical asset pricing. The authors find

large (conditional) expected returns conditional on some candidate predictors. The study argues that—in

comparison to traditional approaches in asset pricing—neural networks and regression trees can incorporate

the vast amount of conditional information and that inter-dependencies among candidate predictors are

important. Freyberger et al. (2020b) use an adaptive group LASSO to select firm characteristics that

provide incremental explanatory power for expected returns. In addition to the selection of characteristics,

the paper uses non-parametric series estimation to allow for non-linearities of expected returns with respect

to characteristics but imposes additivity across characteristics to overcome the curse of dimensionality. The

paper finds that a small set of characteristics is sufficient to explain differences in cross-sectional expected

returns and that non-linearities in the characteristics are generally important. Gu et al. (2021) use an

auto-encoder for dimensionality reduction in a conditional asset pricing model. In particular, the paper

uses auto-encoder to allow latent factors and factor exposures to depend on conditioning variables. As a
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result, factor exposures depend in a non-linear way on a small set of hidden variables—the non-linearity of

factor exposure differentiates this asset pricing model from the IPCA as presented by Kelly et al. (2019).

Bryzgalova et al. (2020) shows how to extract test assets conditional on characteristics via regression trees.

The paper shows that the—so extracted—test assets are characterized by higher out of sample Sharpe ratios

and expected returns in comparison to state-of-the-art pricing models. Chen et al. (2023) uses the moment-

condition as implied by the no-arbitrage to estimate a set of conditional asset pricing models for equities.

The paper uses a combination of long-short-term-memory (LSTM) models and feed-forward networks (FFN)

for dimensionality reduction and a potentially non-linear approximation of the pricing kernel. Bianchi et al.

(2021) shows the success for deep learning for treasury securities. The study documents that macroeconomic

time series have increased predictive accuracy beyond predictors that are derived from the term structure

for a neural network architecture. This echoes the findings of Ludvigson and Ng (2009) for linear pricing

kernels. The authors find evidence for non-linearities among yields, and that macroeconomic time series,

play an important role for the pricing of treasury security portfolios. We are contributing to this strain of

literature by focusing on U.S. corporate bond returns.

We proceed as follows: Section 2 describes the data construction and sample selection. Section 3 in-

troduces the estimation approach and the evaluation methodology. Section 4 presents the results for each

method of estimation and data set. Section 5 compares the results against the literature and other model ar-

chitectures. Section 6 concludes. The appendix contains various auxiliary technical results that are not part

of the main body of the paper, a discussion of alternative estimation architectures, the results of predictive

regressions for the linear models, and finally, summary statistics.

2 Data

We use two main dataset for the estimation of asset pricing models for corporate bonds. First, we use

a dataset of 40 bond portfolios. Second, we build a comprehensive longitudinal dataset, including a rich

set of conditioning information, for individual corporate bonds. While the data for equity and treasury

securities is, to a large extent, standardized and readily available, the data for individual corporate bond

returns requires several pre-processing steps. In addition, we develop an original algorithm to match bond

returns with the fundamental characteristics of the issuer, including the historical equity performance and

characteristics. Section 2.1 provides details on the data construction and Section 2.2 describes the sample

selection, tabulates summary statistics for each sample, and illustrates the sample composition in comparison

to a commonly used benchmark portfolio, the S&P500. Section 2.4 elaborates on the data management that

allows for an efficient estimation with limited hardware requirements for a large, unbalanced longitudinal

dataset.

2.1 Individual bond data construction

Bond Returns The data construction on corporate bond returns is based on Elkamhi et al. (2020).2 The

data consists of a panel of clean corporate bond prices between February 1973 and December 2019 and is

constructed from four main sources, that is, the Lehman Brothers Fixed Income Database, the Mergent

FISD/NAIC Database, TRACE, and DataStream. If price information are available from more than one

source, priority is given according to following order: Lehman Brothers Fixed Income Database, TRACE,

2We thank Yoshio Nozawa for generously sharing his dataset with us.
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Mergent FISD/NAIC and DataStream.3 Bond rating information are obtained from Standard & Poor’s when

available, and Moody’s otherwise. Further, bond defaults are identified from Moody’s Default and Recovery

database which provides a historical record of bond defaults and recovery values from 1970 onward. If the

price information for a defaulted bond is unavailable, we resort to price information in Moody’s recovery file

to accurately account for the return upon default.

We follow Elkamhi et al. (2020) and apply several filters to the dataset. First, we exclude bonds with

floating rates and other embedded options other than callable bonds. While call-ability provides optionality

and is typically priced, Chordia et al. (2017) shows that the call-ability of corporate bonds does not affect

the cross-section of average returns in a significant way. In addition, excluding call-able bonds would greatly

reduce the length of the sample period because–until the late 1980s–very few bonds were non-callable.

Furthermore, we exclude a few observations that are likely to erroneous recording, that is, we exclude price

observations that are below 5 dollars or above 1,000 dollars per 100 dollar face value. Further, we remove

bonds maturing in less than a year.

Based on clean prices and accrued interest, we calculate monthly bond returns as:

Rt+1 =
Pt+1 +AIt+1 + Coupont+1

Pt +AIt
− 1

where Pt+1 is the clean price and AIt+1 is the accrued interest at the end of month t+ 1, and Coupont+1 is

the coupon paid during month t+ 1.

The data spans a total of 38,955 unique securities, 7,995 unique issuers and 2,341,941 non-missing monthly

return observations. The full set of portfolios are available for the period between February 1973 and

September 2020.

Macroeconomic time series The majority of the monthly time series data is obtained from the FRED-

MD database as constructed and described in McCracken and Ng (2016) and available at https://research.

stlouisfed.org/econ/mccracken/fred-databases/. All variables are transformed to obtain stationary

series according to the recommendations of McCracken and Ng (2016).

We append the macroeconomic time series data with six additional time series from Welch and Goyal

(2008).4 Instead of using the most recent published data by Welch and Goyal (2008) which covered the

period until December 2019 at the time of our dataset construction, we reconstruct all time series from

conventional data sources which include WRDS, FRED and Bloomberg. The reconstruction allows us to

cover the full time period from February 1973 to September 2020 for which bond returns are available.

Additional details on the series construction can be found in Appendix Table A.23. Summary Statistics are

tabulates in Table A.11, A.12, and A.13.

We exclude the macro variables ACOGNO (Manufacturers’ New Orders: Consumer Goods) and UMC-

SENT (University of Michigan: Consumer Sentiment) as this would shorten our sample period.

Bond issuance and issuer matching While the link between equity prices / returns and fundamentals is

well established via the Compustat/CRSP crosswalk, the link between bond issuance and issuer is generally

missing. We construct such link based on our own matching algorithm. Each bond issuance is uniquely

identified by the 9 digit CUSIP, where the first 6 digits identify the issuer, the following 2 digits the security

3Nozawa (2017) shows robustness to reversing the order of priority in the online appendix.
4This includes (i) dividend-price ratio, (ii) book-to-market ratio, (iii) net equity expansion, (iv) term spread, (v) default

spread, (vi) stock variance.
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and the last digit is the check number. Importantly, the issuer identifying information for debt instruments

differs from those of equity instruments; hence, a naive matching on the first 6 digits leads to erroneous

results. Instead, we use a combination of Mergent FISD, the S&P rating file, and the Capital IQ Identity

file to obtain information about the issuer of the debt security. Ultimately, we declare a match to be valid

if the corresponding gvkey × year combination has non-empty or non-zero asset in Compustat. If more

than one valid gvkey is identified, we resolve any ambiguity based on an iterative name matching using the

match that exhibits the lowest Levenshtein distance. We conducted extensive validation and found good

matching results. The overall matching rate using this procedure at the year × CUSIP level was 78.7%

. We conducted a study of the unmatched bond issuances and found a few patterns. First, public utility

companies in the U.S. are active bond issuers but often remain private companies which are not covered

by Compustat. Further, we found a few issuances where the Compustat coverage seemed incomplete for

unknown reasons. We found no evident pattern that would introduce a selection bias apart from a selection

on public companies as dictated by the nature of Compustat.

Issuer fundamentals and equity characteristics With the cross-walk between bond returns and Com-

pustat at hand, we construct a comprehensive dataset on issuer fundamentals based on balance sheet char-

acteristics in Compustat. This includes, among others, total assets, cash position, cash flow information and

profitability indicators. Further, we use the established cross-walk between Compustat and CRSP to append

further market based information; such as, share price, shares outstanding and derived variables as market

capitalization and market-to-book ratios. In addition, we use CAPM and Fama-French 3-factor estimates

on factor exposure, alpha, and idiosyncratic volatility from the WRDS Beta Suite. Further, we add lagged

equity returns for bond issuers that have publicly traded equity outstanding. We follow Daniel et al. (2020)

to adjust the equity returns for delistings.

The full list and the description of fundamental variables and market based variables is tabulated in

Appendix Table A.20 to Table A.23.

Bond portfolios We use the bond portfolios constructed by Elkamhi et al. (2020). The portfolios are

sorted based on the following characteristics, that is, (i) credit spreads (Nozawa (2017)) (ii) intermediary

capital exposure (He et al. (2017)), (iii) credit rating (Bai et al. (2019)), (iv) downside risk (Bai et al. (2019)),

(v) maturity (Gebhardt et al. (2005)), (vi) idiosyncratic volatility (Chung et al. (2019)), (vii) and long-term

reversals (Bali et al. (2021)). All portfolios are value-weighted. For credit spreads we create a portfolio for

each tercile and a portfolio for each quintile for the other characteristics.5 The portfolio returns cover the

period from February 1977 to December 2018.

2.2 Summary statistics

We obtain two final dataset, one for bond portfolios and the other for individual bonds. In the following we

provide a summary for each of the dataset, more detailed summary statistics are in the Appendix.

Bond portfolios We enrich the dataset with the 40 bond portfolio returns with a broad set of macroe-

conomic time series, Goyal & Welch time series, the cross-sectional median of corporate fundamentals, and

5Portfolio returns between period t and t+1 are obtained by sorting bonds based on their characteristics in the time period
between month t−12 and t−1. The sorting and the measurement of the return is done with a gap of one month to minimize the
impact of measurement errors in bond prices. Long-term reversals are measured by the negative of cumulative 3-year returns
from t− 48 to t− 12.
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bond portfolio specific return characteristics, such as the spread over treasures, momentum, reversal amongst

others. Table 1 summarizes the sample and Appendix Tables A.8, A.9 tabulate selected summary statistics.

value

# of macro variables 126
# of Goyal-Welch Variables 6
# of median time series fundamentals 41
# of forward spreads 10
# return characteristics 9
# of portfolios 40
Sample start October 1978
Sample end December 2018

Table 1: Overview Bond Portfolio Dataset

Individual bond returns The dataset on individual bond returns comprises individual bond returns,

macro time series, and corporate fundamentals, lagged equity returns and factor exposure. Table 2 summa-

rizes the sample and Appendix Table A.10 tabulates selected summary statistics.

value

# of firm fundamentals 41
# of macro variables 126
# of Goyal-Welch Variables 6
# of industry dummies 10
# of bond characteristics 9
# of forward spreads 10
# of median time series fundamentals 41
# securities 10,715
# issuers 1,922
Sample start February 1973
Sample end January 2020

Table 2: Overview Individual Bond Return Dataset

2.3 Sample representativeness

The data collection and selection raises the question of which firms account for the majority of our sample.

We illustrate the sample against one common benchmark, the S&P500. Figure 1a shows the share for which

the issuers in our sample account for in the S&P500. With the exception of the 1998-2001 period, our sample

accounts for 30% or more of the market capitalization, and approximately 30% of the number of firms in

the S&P500. The 1998-2001 period constitutes an outlier because the coverage of the Lehman Brother

Fixed Income Database fades out but the TRACE trade reporting system was not yet established. There is

no alternative data source for this time period and thus this limitation of the data seems insurmountable.

We illustrate the fraction of our sample bonds that are part of the S&P 500. Figure 1b shows that over

the sample period, between 60%-80% of all bonds in our sample are issued by firms which are part of the

S&P 500; volume wise the percentage is approximately 10% higher. The small decline around the year 2000
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coincides with the time period in which the number of public firms reached its historical peak in the U.S.

As a consequence, it is more likely that our sample contains public firms that do not belong to the S&P500.

While the share shows some volatility in the 1998-2001 period, the share and volume of the covered sample

as a share of the S&P500 remains approximately constant. In untabulated summary statistics, we see that

this is primarily a result of the shrinking cross-section, not so much of the sample composition. Thus, while

the 1998-2001 period remains a data limitation, the representation of firms during this period is somewhat

stable.
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(a) Sample as Share of S&P 500

Notes: The figure shows the number of companies as a
share of the total number of companies in the S&P 500
(Count) and the market capitalization of the companies
in the sample as of the total market capitalization of the
S&P 500 (Market Capitalization).
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(b) Fraction of the Sample in S&P 500

Notes: The figure shows the fraction of bonds in our sam-
ple that are in the S&P 500 (Bond Count) and the fraction
of the face value of the bonds in the S&P 500 (Bond Vol-
ume).

Figure 1: Sample Composition

2.4 Data management

One of the challenges with financial data is a typically unbalanced longitudinal dataset regardless whether

one studies equities or bonds. Firms enter and exit public markets which results in a lot of turnover for

datasets with a long sample horizon. The problem is only exacerbated with bonds as most bonds have a

varying maturity between 3 to 7 years. The unbalanced nature of the data introduces serious challenges

in the estimation. One solution in the literature is to expand the sample with unknown values to create

a balanced longitudinal dataset (see e.g. Chen et al. (2023)). While this solves the technical problems at

estimation, it introduces other challenges. First, it introduces a look-ahead bias as the sample universe in

the future is not known at the present. Second, it significantly increases the hardware requirements and the

need for parallelization due to memory constraints. Parallelization in turn makes gradients more noisy.

Our approach is to augment the set of features we feed to the algorithm with a double index, that

uniquely identifies an asset over time. When a batch of data is furnished to the algorithm, it first splits

the batch according to the dates present in the batch, and then processes the dates sequentially. This gives

the algorithm only the minimal information it needs to calculate the weights of the assets, and the loss for

the current data batch. As such, we are able to estimate all of our models on a single A100 GPU with

40GB memory. Moreover, this allows to use the batch size as a varying hyperparameter for training the

neural network architectures. Batch size is an important hyperparameter for all stochastic gradient descent

optimization algorithms.
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3 Methodology

We estimate the stochastic discount factor (SDF) that prices corporate bonds in the presence of a large set

of macroeconomic and individual fundamentals as conditioning information. We first discuss the theoretical

foundations for the estimation via mispricing loss in Section 3.1. We then introduce our two main approaches

for the estimation of the model architectures in Section 3.2. Section 3.3 introduces the model candidates

and other important estimation details; including, the regularization of the estimation. Last but not least,

we discuss the evaluation of our models in Section 3.4.

3.1 No arbitrage and mispricing loss

We derive the mispricing loss from the conditional moment restriction that is at the heart of finance theory.

The conditional moment restriction is a natural starting point since it is implied by no arbitrage (Cochrane,

2009). Concretely, no arbitrage implies a conditional moment restriction of the following form:

Et[Mt+1R
e
t+1] = 0, (1)

where Mt+1 is the stochastic discount factor, Re
t+1 is the excess return of the asset over the risk-free rate,

and Et is the expectation with respect to the time t information set.

We consider a linear SDF with a single risk factor of the following form Mt+1 = 1− ωT
t R

e
t+1 = 1−Ft+1.

Using this formulation, we can express the excess return as:

Et[R
e
t+1] =

(
−
Covt(Mt+1, R

e
t+1)

V art[Mt+1]

)
V art[Mt+1]

Et[Mt+1]
=: βtλt. (2)

We can now reinterpret equation (2) as a regression written as:

Re
t+1 = βtλt + ϵt+1. (3)

Thus, we can express the mispricing error as:

ϵ̂t+1 = Re
t+1 − R̂e

t+1 =
(
Id− β̂t(β̂

T
t β̂t)

−1β̂T
t

)
Re

t+1. (4)

Our approach will be to estimate the weights ωt that constitute the risk factor Ft+1 = ωt ·Re
t+1 using various

features and neural network architectures, where each time the loss is guided by minimizing the empirical

deviation from the fundamental asset pricing equation in (1). Written out fully, the empirical loss we use is

given by:

1

N

N∑
i=1

|Ti|
T

∥∥∥∥∥ 1

|Ti|
∑
t∈Ti

(
1− ω(zt,·) ·Re

t+1

)
Re

t+1,i

∥∥∥∥∥
2

. (5)

where ∥·∥ is an euclidean vector norm and Mt+1 = 1− ω(zt,·) · Re
t+1 is the estimated SDF. A more general

form would include a vector of test assets g(·), and is discussed in section 5.2. An important implication of

this approach is that all the estimated SDFs are on the space of tradeable assets and thus can be traded

as a strategy. The resulting asset pricing model is a conditional asset pricing model, since all the portfolio

model weights ωt are conditional on the current information set.

Once the SDF is estimated, the definition of the βt in equation (2) can be used to estimate the risk

exposures of the assets. Based on the identity Et[Mt+1] = 1, which can be shown to follow from the

9



definition of the SDF (see e.g. pg. 54 in Back (2017)), we estimate β by estimating

Et[Ft+1R
e
t+1]. (6)

We approach this estimation as a traditional prediction problem with neural networks, where the feature

set is the set of available information at time t, and the labels are given by F̂t+1R
e
t+1, with F̂t+1 being the

estimated tradeable risk factor of the SDF.

3.2 Estimation approach

For the estimation of our model architectures we use two approaches. We already introduced the conceptual

foundation for the minimization of the mispricing loss in Section 3.1. For the second approach, we make

use of another theoretical property of the SDF: the SDF projected into the asset space is the portfolio that

obtains the highest Sharpe ratio among all tradable portfolios. This leads to our second approach in which

we maximize the Sharpe ratio of the SDF portfolio. Thus, we use the following two approaches as the

objective function for our model estimation:

A. Approach 1 - Minimizing mispricing-loss (MP-min): The SDF is defined by the conditional

moment restriction implied by no-arbitrage. We consider the deviation from this moment condition as

the mispricing. As such we can define a loss over all mispricing errors which becomes the objective in

our estimation procedure.

B. Approach 2 - Maximizing Sharpe ratio (SR-max): Using the property that the projected SDF

into the space of traded assets exhibits the highest Sharpe ratio, we can use the Sharpe ratio of the

SDF portfolio as an alternative optimization objective.

Classic finance theory predicts that both approaches should result in the same portfolio. Foreshadowing

some of the result, in our exercise with bond level data, using the maximization of the Sharpe-ratio as

training objective, delivers typically higher out-of-sample Sharpe ratios than using the mispricing loss as

training objective. For predictability, as measured by explained variation and cross-sectional R2, we obtain

better results using the minimization of the mispricing loss as the training objective. The discrepancy

between the two approaches is smaller for bond portfolios.

Another choice that we have to make is the universe of conditioning information that we use in the

estimation process. For the estimation at the bond portfolio level we have a set of bond portfolio return

characteristics and an exhausting list of macro time series available. When we estimate the SDF at the

individual bond level, we have in addition individual bond characteristics and a large set of fundamental

characteristics of the respective issuer available. We consider three main data environments in the estimation

procedure:

A. Estimate SDF with the full feature universe (baseline).

B. Estimate SDF using only bond characteristics, no macro data (noMacro)

C. Estimate SDF on non-financials and non-REITs only (nonFin)6

6Because the size of fins and REITs is small, and even smaller in train and validation dataset, we do not perform a full search
across all architectures and hyper-parameters. Instead, we re-estimate the best architecture and using the best hyperparameters
of the baseline with the slightly smaller nonFin dataset.
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Our estimation approach has a set of shortcomings that may affect performance and applicability for

investment strategies. One property of our estimation strategy is that it does not require to estimate covari-

ances among assets. While this is not required for the estimation of the SDF and thus greatly simplifies the

estimation, we acknowledge that it complicates typical risk management procedures for tradeable strategies,

which include the management of draw-down and risk budget periodically. Moreover, our models do not

account for trading costs. We acknowledge that trading cost are not negligible in the corporate bond market

and may affect the performance of our results, more so than e.g. for equities or ETFs.

3.3 Architectures, hyper-parameters and other details of estimation

Sample Splitting We divide our sample into training, validation, and test set. Specifically, for individual

corporate bonds we have a total of 560 dates, of which we use the first 236 dates as part of our training set,

156 for the validation set, and the remaining 168 dates for the test set. The sample for bond portfolios is

slightly shorter with a total of 437 dates. We use a similar proportional sample division, with the first 183

dates in the training set, the next 122 in the validation set, and the remaining 132 dates in the test set. For

individual bonds this results in a test set comprising the period February 2006 to January 2020. For bond

portfolios, the test set comprises the period from August 2008 to December 2018.

Objective function for training. In the SDF estimation, we distinguish between the two approaches.

In the mispricing loss approach, we use as a training objective function the mispricing loss 5. The main

idea is to choose the weights of the SDF in a way that the total mispricing loss of all observable assets is

minimized.

In the Sharpe ratio maximization approach, we maximize the Sharpe ratio of the implied SDF portfolio.

For training purposes, the fractional definition of the Sharpe ratio shows some undesirable properties. Since

the standard deviation is in the denominator, SGD-based algorithms tend to pick an asset allocation that

minimizes the variance of the portfolio with very large or infinite Sharpe ratios during training. This leads

to a model for weights that does not generalize out-of-sample. Instead we use a linear version of the Sharpe

ratio during training, but use the original definition in the validation and test set. The linear version of the

Sharpe ratio still balances the first and the second moment of the return distribution, but does not lead to

unrealistic Sharpe ratios in the training set. Concretely, we use the following linearized Sharpe ratio:

SR
(
Re

t+1, ω(zt,·)
)
= t-series-mean

(
ω(zt,·) ·Re

t+1

)
− γ × t-series-stdev

(
ω(zt,·) ·Re

t+1

)
. (7)

where γ can be interpreted as a parameter of risk-aversion, that controls the relative importance of the mean

and the standard deviation of the distribution.7 For all of our estimations, we work with a constant risk

aversion parameter of 0.01.

One advantage of this approach is that it does not require the estimation of the full variance co-variance

matrix, which can be challenging. Another advantage is that we are directly optimizing over one of the metrics

of interest, thus bypassing the potential misalignment between the optimization and economic objective. A

disadvantage is that performance is evaluated on a batch-level, whereas a production-level model would

require performance to be evaluated in a more online fashion.

For beta-network estimation, we use mean-squared error as a training criterion. This, since the estimation

is formulated as a standard predictive regression problem with neural networks.

7A similar training function appears in Guijarro-Ordonez et al. (2021).
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Selection criteria for architecture and hyperparameters In the SDF estimation, for both approaches

we use the typical fractional definition of Sharpe ratio to select best hyperparameters and architectures. In

the beta-network estimation, we use mean squared error as our loss function.

Model Architectures We use a set of four candidate architectures. We use these to model both the

portfolio weights, and the betas as a function of bond and macro characteristics.

A. Model 1 - Shallow FFN: hidden units = [64,32,16,8]

B. Model 2 - Deep FFN: hidden units = [64,64,32,32,16,16,8,8]

C. Model 3 - Deeper FFN: hidden units = [64,64,64,32,32,32,16,16,16,8,8,8,4]

D. Model 4 - Elastic Net: hidden units = [1].

We find that each of the aforementioned architectures is chosen as a best architecture based on validation

results, for some data environment and objective function. Thus, none of the listed architectures is redundant.

Activation Function There is a growing literature on the selection of the activation function. For our

application, we chose SiLU as activation function. SiLU is a smooth approximation of ReLU. While it has

been found to be slower in training than ReLU or LeakyReLU, it produces better gradients which do not

suffer from the indeterminacy at the kink, like ReLU does (see e.g. Hendrycks and Gimpel (2016)).

Optimizer We use the Adam optimizer (Kingma and Ba (2015)), an optimizer that accelerates and stabi-

lizes gradient descent by keeping track of the exponentially weighted averages of the gradients and squared

gradients. It incorporates in its gradient updates information about the curvature of the loss function, as

well as momentum. This allows it to be more robust in environments where non-stationary data are present,

like ours. Adam optimizer has shown excellent performance in a wide set of applications. The learning rate

is a hyper-parameter over which we loop during the training and validation phase. We consider learning

rates of 0.0001, 0.001, and 0.005.

Batch size Batch size is an important hyperparameter for every SGD-based optimization algorithm. We

try batch sizes of 256, 512, 1024, and 2048.

Number of epochs For both SDF and beta estimation, we train and validate for a maximum of 50 epochs.

Regularization Regularization in the training phase is important to achieve generalization of the model

out of sample. It becomes even more important in an environment with low signal-to-noise ratios as ours.

We combine several methods for generalization. First, we always standard-scale features before feeding

them to the neural networks architecture. We further use L1-regularization and L2-regularization with

varying hyper-parameters in the training stage. Specifically, we try [”none”, 0.001, 0.01, 0.1] for L1- and

L2-regularization. Further, we use batch-normalization for all architectures, except for the ENet. We also

use early stopping with a stop after 8 periods of non-improvement in the validation phase.

Lastly, we use a fixed dropout of 0.01. We do not experiment with a higher degree of dropout due to

known issues of interaction of dropout and batch normalization (see e.g. Li et al. (2019)).

Both model space and hyper-parameter space create a large candidate space of 768 possible combinations

that we search over in the validation phase to decide on the best architecture and hyperparameters.
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Additional regularization based on leverage Financial returns data typically exhibit a low signal-

to-noise ratio which makes generalization of models trained through machine learning methods particularly

challenging. In our context, we have found that the weights produced by neural networks do not generalize

well without an additional normalization. It is appropriate in such context to employ additional regularization

steps that are based on domain knowledge.

One important economic metric in our context, is the amount of leverage that is embedded in the

portfolio. Without constraints, the portfolio weights can assume large positive and negative values. As

leverage is directly tied to portfolio weights, we normalize the weights produced by the networks via an

Euclidean norm. This significantly improves performance and leads to robust results.

There are two Euclidean norms one can possibly use: L1-norm ∥·∥1 and the L2-norm ∥·∥2. The L1-norm

relates directly to the amount of leverage of a portfolio. L1-norm typically implies much more concentrated

portfolios, with some larger weights and lots of smaller weights, L2-norm typically implies more balanced

portfolios with no assets dominating the portfolio. On the other hand, L1-norm typically implies smaller

trading activity focused on a small number of assets, than the L2-norm. Hence, especially when working

with a large cross section that may allow diversification effects, there is a trade-off between diversification

and trading costs. As we do not explicitly model trading costs in the paper, we have focused on the L2-norm.

We perform the normalization on the batch level, by putting an upper bound on the Euclidean norm of the

weights vector on the batch level.8 Because of the norm inequalities for Euclidean norms, for a batch of size

n there is the following bound between the two norms for the same set of weights ω:

∥ω∥1 ≤
√
n∥ω∥2.

Hence, a bound of C on the L2-norm can translate to a varying amount of leverage of the SDF on the

date level, depending on how many dates are present in the batch. This additional flexibility in endogenous

leverage choice, is another advantage of using the L2-norm to the L1-norm.

Heuristically, if the typical date of the asset space contains m assets, the number of dates in a batch of

size n is typically n
m . This translates into a heuristic upper bound on leverage on the date-level of

Cm√
n
,

for a batch of size n.

Concretely, we use an upper bound for the L2-norm of Cport = 1 for bond portfolios. Depending on

the batch size, this practically leads to an effective allowed typical leverage in the range of 0.8 to 2.5.

For individual bonds, the number of assets per date in the cross-section has a lot of variability, but is

orders of magnitude larger than for bond portfolios. Hence, we choose a smaller bound for the L2-norm

of Cbonds = 0.1. Depending on the batch size, this choice practically leads to an effective allowed typical

leverage range between 2 and 7.

Ensembling We ensemble the winning architecture and hyper-parameters with 6 different random states.

All reported results in the paper are of the ensembled models.

Robustness For the nonFin data environment, we do not redo the architecture / hyper-paramater search,

but instead re-estimate the winning hyperparameters and architecture. This is because there are relatively

8As a byproduct, the effective leverage of the portfolio on the date level is influenced by the batch size used for training.
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few fins and REITs in the dataset: only 403 out of 10,715 cusips correspond to financials and REITs overall,

and their distribution is skewed towards the test set. For the noMacro data environment we re-estimate

everything from scratch.

3.4 Model evaluation

We evaluate all final models based on economically motivated financial metrics as commonly used in the

literature. The main interest is in the performance of the model out of sample. We use the Sharpe ratio,

but also the commonly used Sortino and Calmar ratios as an evaluation criterion. We also measure other

financial variables of interest for the portfolio produced by the model on test set, such as CAGR (cumulative

annual growth rate), maximum drawdown (Max-DD in the tables below), but also mean-, and max-leverage

(Mean-lev, and Max-lev in the tables below).

Another important benchmark is the model performance in relationship to frequently used benchmarks

in the financial literature, or risk factors. Thus, we evaluate the model performance against the the S&P 500

index, the Fama-French 3 factor model (FF3) (Fama and French (1993a)) as well as the more demanding

Fama-French 5 factor (FF5) model (Fama and French (2015a)). These are commonly used benchmarks in

the asset pricing literature for equity and are commonly accepted risk factors to which most of the excess

returns can be attributed. While our assets constitute of corporate bonds, it is reasonable that, at least in

part, the exposure to these risk factors also drives excess returns for corporate bond assets.

A separate set of metrics measure out-of-sample predictability. Since predictability at the single asset

level is very low (see table of an xgboost exercise in section A.7 of the appendix, which shows negative

oos-R2 for bond-level data), we focus on average predictability over the cross-section, or over time. This

follows Chen et al. (2023), section F. Concretely, we use the explained variation (EV) and the cross-sectional

R2 (XS-R2). The explained variation is the R2 of a cross-sectional regression on the loadings; this is a

time-series R2 and defined as the following:

EV = 1−
1
T

∑T
t=1 cross-sec-mean

(
ϵ2t
)

1
T

∑T
t=1 cross-sec-mean

(
(Re

t )
2
) . (8)

The cross-sectional R2 is the average pricing error, divided by the average return; this is a cross-sectional

R2, and defined as the following:

XS-R2 = 1−
1
N

∑N
i=1

Ti

T (t-series-mean (ϵi))
2

1
N

∑N
i=1

Ti

T (t-series-mean (Ri))
2
. (9)

4 Results

We present results at the bond portfolio level, as well as individual bond level. The bond portfolios have the

advantage of averaging out idiosyncratic variation and are closest to most asset pricing studies for equity.

One of the downsides is that we cannot include issuer fundamentals as conditioning information and the

model does not have the flexibility to choose the allocation within each of the bond portfolios. Thus, we

estimate the models also at the individual bond level. This takes full advantage of the issuer fundamentals

and allows for a more flexible asset allocation. Ex-ante it is unclear which of the approaches yield better

results due to a variety of trade-offs. We first discuss the results at the bond portfolio level and then the
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results at the individual bond level. As outlined in Section 3.2, we estimate each model architecture and

hyper-parameter configuration with two separate objective functions.

4.1 Bond portfolio results

We first present the results for 40 characteristics sorted bond portfolios (Elkamhi et al., 2020). As described

in Section 3, we estimate asset pricing models for the bond portfolios with two separate sets of condition-

ing information. First, we use bond portfolio characteristics and a broad set of macro time series. In a

second estimation, we omit the macro time series and estimate the models based on the individual bond

characteristics only.

For bond portfolios, we find that the best model has a monthly Sharpe ratio of 0.25 (annual Sharpe

ratio of 0.87). We find little difference in Sharpe ratios using the Sharpe ratio maximization (Approach

1) vis-a-vis the mispricing-loss minimization (Approach 2) as shown in Table 3. The omission of macro

time series leads to overall worse performance. In particular, the best model achieves a lower Sharpe ratio

of 0.22, Sortino ratio, and lower statistical significance for the excess returns. In addition, we see higher

maximum drawdowns, and higher leverage, relative to the model that uses macro time series as conditioning

information.

Environment Results Test Set
Objective Data Sharpe Sortino Calmar Max-DD CAGR Max- lev Mean-lev

MP Bondpf + Macro 0.25 14.09 0.03 0.06 0.02 1.15 0.44
SR Bondpf + Macro 0.24 12.28 0.03 0.07 0.02 1.14 0.44
MP Bondpf 0.22 5.10 0.03 0.17 0.05 2.70 0.99
SR Bondpf 0.22 12.04 0.03 0.09 0.03 1.23 0.56

Table 3: Bond Portfolios - Performance

Notes: The environment describes the objective function that was used for training and the conditioning information. The best
model for each environment is tabulated in Table A.1 in the appendix. The results show a set of financial ratios as described in
more detail in Section 3.4, as well as maximum drawdown (Max-DD), and the portfolio implied maximum leverage (Max-lev)
and mean leverage (Mean-lev). Sharpe, Sortino and Calmar ratios are monthly. All units are expressed in decimal points.

Figure 2 shows the cumulative returns of the SDF portfolio on the test set for both methods and a full

set of characteristics (both bond portfolio characteristics and macro time series).

Excess returns We test for excess returns against commonly used benchmarks, specifically we benchmark

against the S&P 500, the Fama-French 3 factor model (Fama and French, 1993b) and the Fama-French 5

factor (FF5) model (Fama and French, 2015b). Table 4 shows the excess returns (alphas) for bond portfolios.

For bond portfolios we find statistically significant excess returns of the constructed SDF portfolio vis-a-vis

the FF3 factors, marginally significant excess returns against FF5 and robustly significant returns against

the S&P500 when we estimate the model with the mispricing loss as the objective function. The out-

performance is of magnitude 0.1% at a monthly basis, or 1.2% annually. While the magnitude is similar,

the statistical significance is marginally reduced when we estimate the model with the linearized Sharpe

ratio as the objective function. We obtain slightly weaker results when omitting the macro time series as

conditioning information from the model.
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Figure 2: Bond Portfolios - cumulative returns

Environment Alphas in Test Set
Objective Data S&P 500 FF 3 Factors FF 5 Factors

MP Bondpf + Macro 0.001 0.001 0.001
(2.220) (2.070) (1.850)

SR Bondpf + Macro 0.001 0.001 0.001
(2.100) (1.900) (1.700)

MP Bondpf 0.003 0.003 0.002
(1.920) (1.770) (1.570)

SR Bondpf 0.002 0.001 0.001
(1.900) (1.800) (1.670)

Table 4: Bond Portfolios - Excess Returns

Notes: The environment describes the objective function that was used for training and the conditioning information. The best
model for each environment is tabulated in Table A.1. The excess returns (alphas) are the estimate of the intercept of the SDF
return series on the corresponding risk factors. The numbers in parentheses represent the t-statistic of the estimates. Bold
means significance at the 5% level. All alphas are expressed in decimal points and represent monthly excess returns.

Predictive performance Table 5 shows the results of the beta net performance, as measured by the

explained variation and the cross-sectional R2.

Environment Results Test Set
Objective Data EV XS-R2

MP Bondpf + Macro 0.64 0.88
SR Bondpf + Macro 0.70 0.92
MP Bondpf 0.40 0.71
SR Bondpf 0.65 0.88

Table 5: Bond Portfolios - Predictive Performance

Notes: The environment describes the objective function that was used to train the mode and the conditioning information that
the model had available. The best model for beta estimation for each environment is tabulated in Table A.2 in the appendix.
The results show explained variation and cross-sectional R-squared as described in more detail in Section 3.4. All units are
expressed in decimal points.
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We see that Sharpe ratio maximization delivers somewhat higher predictability for the full feature set

(portfolio characteristics and macro time series), and that excluding macro time series as predictive features

lowers predictability for both SDF estimation approaches.

4.2 Individual bond results

The individual bonds contain 10,715 unique securities of close to 2,000 unique issuers. In principle, the

granularity of the dataset allows for a more targeted portfolio allocation. While in theory this should have

advantages, most of the literature in asset pricing has focused on the return characteristics of sorted portfolios

due to the idiosyncratic variance at the individual security level. Advances in machine learning allow us to

attempt the exercise at the security level.

Just as for bond portfolios, we estimate the SDF using both approaches: mispricing loss minimization

and Sharpe ratio maximization. Besides the data environment with a full feature set, we also consider the

environment where macro time series have been excluded. As an additional robustness exercise, we take the

best architecture and hyperparameters estimated with a full feature set, and re-estimate it excluding bonds

issued by financials as well as REITs. If the results do not change significantly based on this exclusion, we

can assert that they are not driven by financials and REITs. Table 6 shows the SDF portfolio performance

for each data environment and objective. The corresponding excess returns are shown in Table 7 in the text.

Environment Results Test Set
Objective Data Sharpe Sortino Calmar Max-DD CAGR Max-lev Mean-lev

MP Ind. + Bond + Macro 0.17 6.30 0.02 0.20 0.04 3.15 1.29
SR Ind. + Bond + Macro 0.27 3.93 0.03 0.27 0.12 4.62 2.42
MP Ind. + Bond 0.12 0.46 0.02 0.56 0.08 4.66 3.51
SR Ind. + Bond 0.29 2.54 0.05 0.29 0.16 4.29 2.58
MP Ind. + Bond + Macro - Fin 0.25 2.83 0.03 0.28 0.10 2.70 2.19
SR Ind. + Bond + Macro - Fin 0.26 2.02 0.03 0.39 0.14 3.97 3.20

Table 6: Individual Bonds - Performance

Notes: The environment describes the objective function that was used to train the model and the conditioning information
that the model had available. − Fin means financials and REITs were excluded. The best model for each environment is
tabulated in Table A.3 in the appendix. The results show a set of financial ratios as described in more detail in Section 3.4, as
well as maximum drawdown (Max-DD), and the portfolio implied maximum leverage (Max-lev) and mean leverage (Mean-lev).
Sharpe, Sortino and Calmar ratios are monthly. All units are expressed in decimal points.

The best performing model with individual bonds achieves a monthly Sharpe ratio of 0.29, or annual

Sharpe ratio of 1.00. Thus, the implied SDF portfolio shows even better return / risk characteristics relative

to the best performing model for bond portfolios.

We find that maximizing the Sharpe ratio (Approach 2) performs overall better than minimizing the

mispricing loss (Approach 1) in terms of Sharpe and Calmar ratios in the test set. Moreover, Sharpe ratio

maximization leads to higher CAGR, together with higher and more significant excess returns.

Moreover, training models with Sharpe ratio maximization objective is always faster than with the

mispricing loss. This discrepancy is considerably larger for individual bonds data than for bond portfolios.

Hence, the computational bottleneck in the case of minimizing mispricing loss is most likely the calculation

of the batch-mispricing loss (equation 5).

Figure 3 makes clear the dominance of the Sharpe ratio maximization approach in terms of cumulative

returns over time. It depicts the value indices of the SDF portfolio in the test set for both objective functions,
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for the data environment without any exclusions of features or assets.

Figure 3: Ind. Bonds - Cumulative Return, full info set

The model with the highest Sharpe ratio in our estimation omits the macroeconomic time series as

conditioning information. While this model achieves the highest Sharpe and Calmar ratios, the Sortino ratio

is somewhat lower and drawdowns higher, together with higher mean leverage than the model estimated with

the same objective but in an environment with macro features. We conjecture that the result of an improved

Sharpe ratio under exclusion of macro features may not hold when searching across a larger hyperparameter

search, e.g. for risk aversion parameters γ higher than 0.01 in the formulation of the linearized Sharpe ratio

(see equation 7).

Finally, the results do not change qualitatively when excluding financials and REITs, though the discrep-

ancy in terms of Sharpe and Sortino ratios becomes smaller.

Excess returns We test for excess returns against the same benchmarks as for bond portfolios. The model

and objective combination with the highest Sharpe ratio yields monthly excess returns of 1.0% vis-a-vis the

S&P 500, or 12.0% annually, with a t-statistic of 3.040. Even against the FF5 benchmark, the monthly

excess return remains close to 1.0% with a t-statistic of 2.500 as shown in Table 7.

In principle, one could also consider the 40 bond portfolios as the risk factors that span the SDF. Without

thorough study or precedent in the literature it is unclear which of the 40 bond portfolio represent risk factors,

that is factors with non negative risk prices. We use all 40 portfolios as potentially relevant and find no

statistically significant excess returns of the SDF portfolio with respect to these bond portfolios (see last

column of Table 7). This suggests that the 40 bond portfolios span the SDF well.

Predictive performance Table 8 shows the predictive performance of the beta networks for individual

bonds data. While the SDF portfolio estimated using the objective of Sharpe ratio maximization performs

typically better in terms of financial ratios, the performance ordering reverses for predictability. For a

given data environment, minimizing the mispricing loss leads to often substantial increases in the explained

variation and the cross-sectional R2. We did not observe this difference in predictive performance for bond

portfolios – the predictive performance was better, while the Sharpe ratios were close to each other when
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Environment Alphas in Test Set
Objective Data S&P 500 FF 3 Factors FF 5 Factors Bond Portfolios

MP Ind. + Bond + Macro 0.003 0.003 0.003 0.001
(1.870) (1.920) (1.820) (0.380)

SR Ind. + Bond + Macro 0.007 0.006 0.006 0.001
(2.700) (2.380) (2.290) (1.000)

MP Ind. + Bond 0.001 0.002 0.002 -0.001
(0.180) (0.530) (0.480) (0.710)

SR Ind. + Bond 0.010 0.008 0.009 0.003
(3.040) (2.780) (2.500) (3.280)

MP Ind. + Bond + Macro - Fin 0.005 0.005 0.005 0.000
(2.410) (2.100) (1.930) (0.700)

SR Ind. + Bond + Macro - Fin 0.008 0.007 0.007 0.001
(2.470) (2.140) (1.960) (0.700)

Table 7: Individual Bonds - Excess Returns

Notes: The environment describes the objective function that was used to train the model and the conditioning information that
the model had available. − Fin means financials and REITs were excluded. The best model for each environment is tabulated
in Table A.3 in the Appendix. The excess returns (alphas) are the estimate of the intercept of the SDF return series on the
corresponding risk factors. The numbers in parentheses represent the t-statistic of the estimates. Bold means significance at
the 5% level. All alphas are expressed in decimal points and represent monthly excess returns.

using the Sharpe ratio as the objective function vs. minimizing the mispricing loss. This difference may be a

reflection on the differing idiosyncratic variation in the two datasets. The mispricing loss seems overall better

suited to fit the model to the variation of the data when there is considerable idiosyncratic variation, whereas

the Sharpe ratio maximization training objective allows for better generalization in terms of financial ratios

in the test set.

Environment Results Test Set
Objective Data EV XS-R2

MP Ind. + Bond + Macro 0.23 0.45
SR Ind. + Bond + Macro 0.19 0.39
MP Ind. + Bond 0.20 0.27
SR Ind. + Bond 0.12 0.18
MP Ind. + Bond + Macro - Fin 0.22 0.36
SR Ind. + Bond + Macro - Fin 0.16 0.30

Table 8: Individual Bonds - Predictive Performance

Notes: The environment describes the objective function that was used to train the model and the conditioning information
that the model had available. − Fin means financials and REITs were excluded. The best model for each environment is
tabulated in Table A.4 in the Appendix. The results show explained variation and cross-sectional R-squared as described in
more detail in Section 3.4. All units are expressed in decimal points.

To further illustrate the difference between the two approaches, SR-max and MP-min, we calculate the

split of the SDF portfolio return across industries in the test set. Figure 4 shows the cumulative returns in

the test set for each separate industry.

The most pronounced difference is visible in the evolution of the energy sector (labeled “enrgy”). The

investment into the energy sector sustains considerable losses in 2015 and early 2016 for both training
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objectives. This coincides with a drop in the oil prices from above $100/barrel to about $140/barrel. Overall,

this had a larger influence on the returns under the mispricing loss objective, with persistent effects until

the end of our sample period. This is because a greater degree of the cumulative return had come from the

energy sector in the preceding years under this objective criterion. On the other hand, the cumulative return

of the investment into the energy sector using the Sharpe ratio maximization objective only experienced a

temporary decline with a subsequent bounce to the previous level. The overall contribution to the portfolio

(a) Industry Return - Sharpe Ratio

Notes: Cumulative returns per industry sector on test set
for maximization of Sharpe ratio approach.

(b) Industry Return - Mispricing Loss

Notes: Cumulative returns per industry sector on test set
for minimization of mispricing loss approach.

Figure 4: Cumulative Industry Returns

return is determined by the cumulative return of the industry times the exposure to the sector. In order to

obtain the exposure to the energy sector, we calculate the signed leverage share of the energy sector for both

models. Concretely, we calculate for each date the share of the total leverage due to the energy sector, and

multiply it with the sign of the sum of weights in the respective sector:

sign(sum(weights of energy))× sum(|weights of energy|)
total leverage

.

The results of the calculation for the energy sector are shown in Figure 5.
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Figure 5: Energy sector: Signed share of leverage

The signed leverage share of the energy is much smoother when the objective is Sharpe ratio maximization.

It also never crosses in negative territory and remains relatively stable over time. For the model that is

estimated with the mispricing loss, the signed leverage shows large swings for the leverage share. For this

training objective, we observe a similar pattern for the share of the overall portfolio leverage for several

industries, but not all of them. In contrast, the signed leverage measure is always smoother for all industries

in the case of Sharpe ratio maximization.

Ex-post analysis: Market regimes for the US corporate bond markets To gain additional insights

into our model performance results, we estimate a Gaussian hidden Markov model (HMM) with two and

three states on the 40 bond portfolios. This allows us to better understand the market regimes in the US

corporate bond market, in a way that is decoupled from the results of our neural networks exercise. The

Gaussian HMM simultaneously estimates the hidden states and the probability distribution across these

states.

The HMM model with three states delivers states with the clearest interpretation.9 Concretely, we find

the following three states with the corresponding colors in parentheses:

A. State 1: high volatility, high positive returns (blue)

B. State 2: low volatility, low positive returns (orange)

C. State 3: high volatility, negative returns (green)

In Figure 6 we show the evolution of the equally-weighted value index on the 40 bond portfolios split according

to the estimated HMM states.

The 1980s, a period with high inflation and large uncertainty about monetary policy, are characterized

with a large presence of the high-volatility-negative return state. Starting in the early 1990s the low-volatility-

small-positive-returns state begins to dominate. This dominance continues throughout the remainder of the

sample period, albeit interspersed with clustered occurrences of the other two states. The market oscillates

between the more extreme states 1 and 3 from the late 1990s to 2005. Throughout our test set, the dominant

state is the low-volatility-low positive returns state, as Figure 6 shows. Interestingly, even the financial

9Section A.2 in the Appendix contains the numerical description of the hidden states.
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Figure 6: Bond Portfolios - HMM state evolution vs. equally-weighted bond portfolio index.

dot.com bust and the financial crisis of 2008/2009 does little to change the dominance of the low-volatility-

low-positive returns state. At first, this might be surprising but it is important to keep in mind that the

bonds in our sample are the most liquid bonds, a predominant share of which are issued by companies in

the S&P500 as described in Section 2.4.

5 Contrast to literature and other models

In 5.1 we present a more “traditional” asset pricing benchmark in the form of a linear pricing kernel and

dimensionality reduction of the candidate macro predictors via a dynamic factor model, which we estimate

via general method of moments (GMM). Section 5.2 presents an alternative approach to estimation that is

based on the modeling in Chen et al. (2023). Its focus is again minimizing deviations from the conditional

no arbitrage requirement in equation (1), but now it uses conditional test assets for the estimation.

5.1 Linear Models

Using characteristic sorted portfolios as test assets has a long history in the empirical asset pricing literature

for equity. It comes at the advantage of having a consistent time series for each portfolio, when the latter

contains assets that are substituted dynamically over time. Further it reduces some of the idiosyncratic

variance of individual assets. However, the formation of portfolios prevents us from using individual firm

or bond characteristics as candidate predictors. We thus focus on macroeconomic aggregate time series to

construct candidate test assets.

Dynamic factor model. The large number of potential candidate predictors that are observable in the

macroeconomy as well as the limited amount of test-assets, requires a dimensionality reduction. One popular

way to do this is to estimate a dynamic factor model and to use the factors as candidate predictors. We use

a dynamic factor model with the following structure:

xit = λ′
iFt + ϵit, i = 1, . . . , N ′, t = 1, . . . , T ′.

22



where, Ft is a r × 1 vector (the latent factors) and λi are the latent factor loadings. One of the choices

that a dynamic factor model requires is the optimal number of factors r. We use the information criteria as

presented in Bai and Ng (2002) to determine the optimal number of factors in our setting. Specifically, given

the large number of macro time series when compared to the number of periods T , we use their information

criteria PCpi, i = 1, 2, 3 and ICp3. We evaluate the robustness of the optimal number of factors by evaluating

versions of these information criteria where we introduce a hyperparameter that multiplies the penalty for

model complexity, and we apply these criteria where the penalty for model complexity/overfitting is scaled

down by respectively 10, 20, 30%.10 We find that 45 macro factors is the most sensible suggestion according

to the information criteria of Bai and Ng (2002). While 45 factors is a substantial reduction from the original

132 factors, it is still large relative to the 40 available test portfolios. We follow Ludvigson and Ng (2009)

by imposing an ex-ante restriction on the number of factor; in our case a maximum of 39 factors. With this

restriction, the PCpi, i = 1, 2, 3 and ICp3 criteria give an optimal number of 30 factors. We also test more

parsimonious models in accordance with Ludvigson and Ng (2009). In particular, we consider specifications

with 7, 8, and 9 factors.

Asset Pricing. We first investigate whether macroeconomic information helps in pricing U.S. corporate

bonds. We postulate that the stochastic discount factor (SDF) depends linearly on a number of macro

factors and the Cochrane-Piazessi (CP) factor as first defined in Cochrane and Piazessi (2008).11

sdft = 1− β′Ft − γ′CPt, (10)

where Ft = [F1t, . . . , F(m−1)t], with m = 8, 9, 10, 30. Here, m is the number of factors of the dynamic

factor model and CPt is the Cochrane-Piazessi factor.

We estimate the stochastic discount factor via general methods of moments (GMM) where the asset pric-

ing restrictions for each test asset provide the moment restrictions. Thus, we have 40 moment restrictions to

estimate the SDF. Given that the set of moment restrictions is strictly larger than the number of parameters

to estimate, we can perform over-identification tests (J-test) for the statistical validity of the SDF.

Table 9 shows the results of the estimation. In particular we test all combinations of m = 8, 9, 10, 30

factors and the inclusion or omission of the Cochrane-Piazessi factor.

In terms of explainability of the variance, the addition of macro factors to the CP factor increases R2 and

the explained variance (EV) by orders of magnitude. This is qualitatively true regardless of the number of

the macro factors included. The addition of the CP factor to specifications with macro factors only, improves

R2 and EV, albeit sometimes by a small amount. The CP factor is highly significant in all specifications.

The R2 value of the CP-only regression is much lower than in the exercise of Ludvigson and Ng (2009). This

suggests that a lot of the variation for corporate bonds is not due to the CP factor, even though the factor

is highly significant. Otherwise, with macro PCA factors, R2 are not orders of magnitude different from

Ludvigson and Ng (2009).

The J-test for the violation of the moment conditions also has small p-value with CP only, but p-value

increases significantly once macro PCA factors are considered. For every specification with macro factors

and the CP factor, a J-test testing the null-hypothesis that the difference between the unrestricted model

containing macro factors and the restricted model with only the CP factor is small, delivers a p-value that is

10The scaling of the penalty function for model complexity does not change the formal results of Bai and Ng (2002). In
particular, the versions of PC/IC that we consider for robustness, are all valid information criteria for the selection of the
number factors within the framework of Bai and Ng (2002).

11See also Hodrick and Tomunen (2018) for the estimation of the CP factor.
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Environment Results

Macro CP Sharpe EV R2 J-test p-val J-test p-val
PCA all moments macro+CP vs. CP

0 1 -0.09 0.04 0.02 0.01 n/a
7 0 0.10 0.37 0.35 0.57 n/a

1 0.07 0.37 0.36 0.60 0.00
8 0 0.07 0.37 0.36 0.53 n/a

1 0.05 0.37 0.36 0.56 0.00
9 0 0.08 0.38 0.36 0.47 n/a

1 0.06 0.38 0.37 0.69 0.00
30 0 0.04 0.54 0.53 0.97 n/a

1 -0.03 0.54 0.53 0.99 0.00

Table 9: Performance Measures GMM

Notes: The environment describes the number of macro PCA factors used in the GMM specification (10), and whether the
Cochrane-Piazessi factor was included. The results show the Sharpe ratio, the explained variation, and the p-values for a J-test
of all moments and of macro PCA + CP vs. CP. For the definition of explained variation see Section 3.4. All units are expressed
in decimal points.

indistinguishable from 0 to more than ten decimal places. This is evidence that the specification containing

the CP factor only is an insufficient model for the bond portfolios, whereas including multiple macro PCA

factors increases the explainability of the model.

We also see that, even though the estimation is in-sample, the Sharpe ratios and explained variations are

significantly lower than the ones achieved by our neural network estimation (compare with Tables 3 and 5).

Predictive performance. We further test the predictive content of macroeconomic time series in predic-

tive regression. In particular, we estimate specifications of the form:

rxj,t+1 = αj + β′
jFt + γjCPt + ϵj,t+1, (11)

where rxj,t+1 is the one month excess log return on the bond portfolio j, Ft is a vector of factors that

are estimated via principal component analysis and CPt is the Cochrane-Piazessi factor as constructed in

Cochrane and Piazessi (2008). We consider here specifications with 8 macro PCA factors.

Predictive regressions in-sample. Tables A.14-A.16 in the appendix present the result of in-sample

predictive regressions for our 40 bond portfolios. In comparison to Cochrane and Piazzesi (2005) the CP

factor has lower predictive power than in the treasury bond market. The R2 on specifications that contain

only the CP factor averages about 0.03. We find that macro factors improve the explanatory power of risk

premiums substantially as evidenced by R2-s of about 0.10 with 8 factors and the CP factor. This is still

substantially lower than the findings in Ludvigson and Ng (2009) for treasury bonds with 5 PCA factors and

the CP factor in the sample period 1964:1-2003:12.12

Predictive regressions out-of-sample Tables A.17-A.18 in the appendix report the results for predictive

regression that are strictly out of sample. The R2 on specifications that contain only the CP factor averages

12Ludvigson and Ng (2009) find R2s of 0.40 and above for the 5 factors + CP factor specifications. However, using the
5 factors alone brings the R2 down to between 0.14 and 0.26. The discrepancy to our results can be mainly attributed to
the differential explanatory power of the CP factor. This is not too surprising since the CP factor has been estimated in the
treasury bond market. In an extension one could think about constructing an analogous factor for the corporate bond market.
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to slightly less than 0.03 with typical values that are slightly lower than the in-sample case. We again find

that macro factors improve the explanatory power of risk premiums substantially as evidenced by R2-s of

about 0.09 with 8 factors and the CP factor.

Finally, we perform a Diebold-Mariano test to compare residuals resulting from the beta estimation via

neural networks as discussed in section 4.1 with residuals from the predictive regressions. Table 10 shows the

Diebold-Mariano statistic for the comparison between residuals from the Sharpe ratio maximization approach

vs. predictive regressions and residuals from the from the mispricing loss minimization vs. predictive

regressions. Both test statistics are significant at the 1% level, and we see the dominance of the nonlinear

methods via neural networks in general.13

Comparison DM statistic

SR vs. predReg -4.82
MP vs. predReg -4.82

Table 10: Bond Portfolios - Predictive performance of predictive regressions vs. SR, MP.

Notes: The table depicts the results of a Diebold-Mariano test of the residuals from the predictive regressions based on the
specification (10) with the Cochrane-Piazessi factor included, versus those coming from the beta-estimation with objectives
respectively Sharpe-ratio maximization, and mispricing loss minimization. Both results are significant at the 1% level. All units
are expressed in decimal points.

5.2 Alternative neural network architectures

A generalization of the mispricing loss (5) consists of using the full conditional expectation in the no-arbitrage

condition of equation (1). One considers test assets that depend on the information available at time t,

and the respective mispricing loss as a training criterion. Chen et al. (2023) uses a GAN-like (generative

adversarial network) architecture to estimate an asset pricing model of the U.S. equity market based on this

generalized moment condition. They focus on the following optimization problem.

min
ω(·)

max
g(·)

1

N

N∑
i=1

|Ti|
T

∥∥∥∥∥∥ 1

|Ti|
∑
t∈|Ti|

(
1− ω(zt,·) ·Re

t+1

)
Re

t+1,ig(zt,i)

∥∥∥∥∥∥
2

. (12)

Here, g(zi,t) are potentially tradeable test assets that depend on features zi,t known at time t for asset i.

They act like a critic to the construction of weights ω(zt,·). The mispricing loss (5) we use can be seen as

a simplification of (12), where the inner optimization does not appear and the test assets are chosen to be

constant with respect to features zi,t. Chen et al. (2023) find better performance of the SDF portfolio on

U.S. equities, relative to other model candidates that their paper considers. Their GAN architecture consists

of two networks, one producing the SDF weights ω, and one producing the test assets g. The networks are

jointly trained in an end-to-end fashion.

We have implemented a version of their approach within our set up of Pytorch, with a few differences in

terms of the coding approach that are detailed in the appendix, section A.3. The main difference in approach

is that we add to the features a double index to identify the asset over time, as explained in section 2.4 on

data management. This allows using the batch size as a hyperparameter for the Adam optimizer, allows for

less memory usage, and keeps the information used by the algorithm to compute the weights at a minimum,

13This comparison uses residuals for the whole sample. The numbers are qualitatively similar if one focuses instead on the
time period of the test set of the neural networks exercise.
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thus avoiding look-ahead bias. Because the training of the GAN architecture takes considerably more time

than the architectures that are the main focus of our paper, we have done only a limited search over the

hyperparameter space of the optimization and over the possible architecture parameters.

We have tested our version of the GAN architecture for both individual bonds and bond portfolios. We

find that for individual bonds a form of mode collapse appears: the SDF portfolio weights ω are equal, or

close-to-equal across assets for every time period. Hence the predicted SDF is a multiple of the equally

weighted portfolio. We claim that this issue is not inherent to the architecture, and should disappear with

a greater hyperparameter/architecture search.

For bond portfolios, the best model from the hyperparameter and architecture search does not exhibit

the mode collapse phenomenon. It achieves a high monthly Sharpe ratio of .30, as well as higher Calmar

and Sortino ratios than the Sharpe ratio maximization and mispricing loss minimization approach on the

intersection of the test sets.14 In terms of cumulative returns, it outperforms the other models as Figure 7a

shows. Together with the higher Sharpe-ratios and higher cumulative returns, the model shows higher mean

leverage and somewhat higher drawdowns (see Figure 7b) than the Sharpe ratio maximization approach.

The excess returns with respect to the S&P500, FF3, and FF5 are of the same magnitude as for the approach

with the Sharpe ratio maximization, but with slightly lower significance levels.

14Note that the test sets are different, because the GAN network uses RNNs which take as input sequences of macro data.
Hence the test set in the GAN case is smaller.
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(a) Cumulative returns of the three approaches.

Notes:sr stands for Sharpe ratio maximization, mp stands for mispricing loss minimization, gan stands for GAN.

(b) Drawdown of the three approaches.

Notes: sr stands for Sharpe ratio maximization, mp stands for mispricing loss minimization, gan stands for GAN.

Figure 7: GAN cumulative returns and drawdown of the two main approaches vs. GAN.

As a separate test, we have compared the GAN approach vs. the Sharpe ratio maximization approach

with the 10 industry portfolios from Kenneth French’s website (monthly returns). We find again that,

compared to Sharpe ratio maximization, GAN delivers higher Sharpe ratio and overall higher CAGR over

time, but this time at a higher maximum drawdown and thus lower Calmar and Sortino ratios.

More details on the comparisons can be found in the Appendix Section A.3.

6 Conclusion

We build on recent advances in data availability and machine learning to estimate asset pricing models and

document their out of sample performance for the U.S. corporate bonds market. We deploy neural network

architectures to flexibly model the stochastic discount factor for two types of datasets. One dataset consists

of bond portfolios, analogous to most of the literature for asset pricing of equities. The second dataset

consists of individual bond level data, that we augment with financial fundamentals of the bond issuer. In

the latter case, we estimate asset pricing models for corporate bonds at the individual security level, similar

to recent studies that estimate asset pricing models at the security level for equities.

As the guiding principle for our estimation, we use two approaches that, under the Efficient Market
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Hypothesis, are implied by no arbitrage conditions. The first approach minimizes the empirical pricing errors

as the objective function in the estimation. The second approach maximizes the Sharpe ratio of the stochastic

discount factor to estimate the pricing model. Despite the equivalence of the two approaches in theory, for

the case of individual bonds, we find diverging performance of the resulting asset pricing model in our setting.

The approach that maximizes the Sharpe ratio delivers better out-of-sample performance in terms of Sharpe

and Calmar ratios and often larger and statistically stronger excess returns relative to conventional asset

pricing benchmarks/risk factors. For individual bonds data, we find that using the mispricing loss leads

generally to higher predictive performance. The discrepancies between the two approaches are smaller for

portfolio level data. We contrast these non-linear approaches to the estimation of the SDF with conventional

approaches that postulate linearity of the SDF in its pricing factors. We find that the non-linear methods

lead to smaller pricing errors, higher Sharpe ratios and more variance explainability.

Our estimation approach using mispricing loss does not consider test assets. While we consider an

alternative based on the work in Chen et al. (2023) on estimation of the SDF for equities (GAN network),

that takes into account endogenously produced test assets, we have not experimented enough with it to

replicate its success with equities data in our setup with individual bonds data. We show that for bond

portfolios, the GAN approach leads to higher Sharpe ratios, whereas for individual bonds a form of mode

collapse appears: the GAN-implied SDF is a multiple of the equally-weighted portfolio. Moreover, estimating

the GAN architecture comes at considerably higher computation costs. More work is needed to compare the

different architectures.

Furthermore, given that Sharpe ratio maximization performs better than the mispricing loss in our set

up of non-conditional test assets, it would be interesting to pursue whether an intermediate approach is

feasible, where Sharpe ratio maximization is the goal, but there is a critic similar to the GAN network, that

tests the estimated SDF using test assets constructed from data. The paper Bryzgalova et al. (2020) goes

in that direction in the case of equities using tree algorithms instead of neural networks.

Finally, another avenue for future research would be to estimate a joint asset pricing model for both

the U.S. corporate bonds and the U.S. equity market. Our work creates a link between bond issuer equity

characteristics and their issued corporate bonds. Jointly estimating the SDF on both asset classes would

contribute to a better understanding of the interplay of the corporate bonds and equity markets.
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Appendix

A.1 Best models for SDF estimation and beta estimation

A.1.1 Bond portfolios

Environment Best model
Objective Data Architecture bs lr l2reg l1reg

MP Ind. + Bond + Macro Model 1 256 0.005 0.001 none
SR Ind. + Bond + Macro Model 3 256 0.005 none none
MP Ind. + Bond Model 2 256 0.001 0.001 none
SR Ind. + Bond Model 2 512 0.001 none 0.001

Table A.1: Bond Portfolios - Best Models for SDF estimation

Notes: The environment describes the objective function that was used to train the model and the conditioning information
that the model had available. The best model describes the architecture, batch size (bs), learning rate (lr) and the l1 (l1reg)
and l2 (l2reg) regularization for the model that obtained the highest Sharpe ratio in the validation set.

Environment Best model
Objective Data Architecture bs lr l2reg l1reg

MP Ind. + Bond + Macro Model 2 256 0.0001 0.1 0.1
SR Ind. + Bond + Macro Model 3 256 0.0001 0.1 0.1
MP Ind. + Bond Model 4 256 0.0001 0.1 0.1
SR Ind. + Bond Model 3 256 0.0001 0.1 0.1

Table A.2: Bond Portfolios - Best Models for Beta estimation

Notes: The environment describes the objective function that was used to train the model and the conditioning information
that the model had available. The best model describes the architecture, batch size (bs), learning rate (lr) and the L1 (l1reg)
and L2 (l2reg) regularization for the model that obtained the lowest mean-squared error the validation set.
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A.1.2 Individual bonds

Environment Best model
Objective Data Exclusions Architecture bs lr l2reg l1reg

MP Ind. + Bond + Macro Model 1 1024 0.0001 none 0.001
SR Ind. + Bond + Macro Model 3 512 0.0001 none 0.001
MP Ind. + Bond Model 4 512 0.005 0.001 none
SR Ind. + Bond Model 4 2048 0.005 0.001 0.001
MP Ind. + Bond + Macro No financials Model 1 1024 0.0001 none 0.001
SR Ind. + Bond + Macro No financials Model 3 512 0.0001 none 0.001

Table A.3: Individual Bonds - Best Model for SDF estimation

Notes: The environment describes the objective function that was used to train the model and the conditioning information
that the model had available. The best model describes the architecture, batch size (bs), learning rate (lr) and the L1 (l1reg)
and L2 (l2reg) regularization for the model that obtained the highest Sharpe ratio in the validation set.

Environment Best model
Objective Data Exclusions Architecture bs lr l2reg l1reg

MP Ind. + Bond + Macro Model 1 256 0.0001 none 0.1
SR Ind. + Bond + Macro Model 4 512 0.0001 0.1 0.001
MP Ind. + Bond Model 2 512 0.005 0.001 none
SR Ind. + Bond Model 2 1024 0.0001 0.1 0.1
MP Ind. + Bond + Macro No financials Model 1 256 0.0001 none 0.1
SR Ind. + Bond + Macro No financials Model 4 512 0.0001 0.1 0.001

Table A.4: Individual bonds - Best Models for Beta estimation

Notes: The environment describes the objective function that was used to train the model and the conditioning information
that the model had available. The best model describes the architecture, batch size (bs), learning rate (lr) and the L1 (l1reg)
and L2 (l2reg) regularization for the model that obtained the lowest mean-squared error the validation set.
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A.2 Numerical results of the hidden-Markov model estimation

We used the package hmmlearn to perform the Gaussian hidden Markov model estimation. We estimate

the volatility of the state by calculating the largest eigenvalue of the corresponding estimated covariance

matrix. The estimated means and largest eigenvalue of estimated covariance calculated by the algorithm are

as follows.

• State 1:

means =


0.81 1.29 1.61 1.90 2.52 1.23 1.34 1.52 1.53 2.00

0.80 1.26 1.80 1.81 2.32 1.00 1.43 1.73 1.77 2.29

1.61 1.57 1.67 1.66 1.93 1.28 1.27 1.49 1.32 2.93

1.19 2.28 1.46 1.59 1.53 1.59 1.65 1.64 1.56 1.55


largest eigenvalue of covariance = 277.05.

• State 2: 
0.18 0.24 0.24 0.21 0.31 0.22 0.21 0.23 0.25 0.33

0.17 0.23 0.24 0.23 0.34 0.19 0.25 0.24 0.27 0.22

0.18 0.22 0.22 0.29 0.31 0.24 0.21 0.24 0.22 0.25

0.17 0.44 0.17 0.19 0.18 0.19 0.26 0.26 0.32 0.34


largest eigenvalue of covariance = 46.64.

• State 3: 
−0.20 −0.41 −0.54 −0.55 −0.36 −0.23 −0.32 −0.43 −0.49 −0.56

−0.14 −0.40 −0.52 −0.51 −0.45 −0.12 −0.36 −0.53 −0.62 −0.57

−0.50 −0.49 −0.51 −0.54 −0.21 −0.37 −0.38 −0.40 −0.43 −0.21

−0.53 0.44 −0.45 −0.43 −0.38 −0.30 −0.42 −0.41 −0.34 −0.31


largest eigenvalue of covariance = 262.82.

A.3 Alternative architectures: GAN

Chen et al. (2023) estimate the SDF portfolio Ft+1 for the U.S. stock market using as features individual

stock characteristics, as well as a large set of macro time series.15 Their feature set is similar to the individual

issuer characteristics and the macro data we use. The generalized mispricing loss function they use for the

estimation is discussed in section 5.2 (see equation 12). If not familiar with the their paper, the reader should

first refer to that section.

The weights for the test assets gt are modeled as a neural network function of the same set of individual

and aggregate characteristics as the weights ωt (Moments Network). The weights of the SDF portfolio are

produced from a separate neural network with the same structure (SDF network). In both networks, the

macro data are passed through LSTM layers that extract a macro state, the individual characteristics through

a FFN. After this step, the two outputs, individual characteristics as well as the macro state, are combined

15The code for their paper is available at https://github.com/jasonzy121/Deep_Learning_Asset_Pricing.
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through another sequence of fully connected FFN layers to produce the final weights of the portfolio. The

two networks, SDF and Moments network are jointly optimized in the following way:

• Step 1: run for a certain number of epochs the generalized mispricing loss but with test assets gt ≡ 1.

The training objective corresponds to the mispricing loss we use in the paper (5).

• Step 2: run for a certain number of epochs the maximization part of (12), i.e. produce the test assets

g.

• Step 3: run for a certain number of epochs the minimization part of (12), i.e. produce the final

portfolio weights.

This procedure is only repeated once – one global epoch. Moreover, because they do not split the train,

validation and test datasets into mini-batches, each of the train-, validation-, test datasets is fed to the

algorithm in one respective batch.

Note that the stocks dataset is also inherently imbalanced over time. Chen et al. (2023) deal with this

unbalancedness by feeding a balanced dataset in one batch, where the missing returns are replaced by a

dummy value UNK.

We have implemented a more online and more memory efficient version of their algorithm. Our version

of the GAN algorithm keeps the same structure of the SDF and Moments networks, but has the following

differences to the original version:

• We can work with the batch size as a hyper-parameter for the Adam optimizer.

• We feed the dataset without bloating it through replacing missing assets with a dummy UNK value.

• We allow for repetition of the trainings Steps 1-3 above, i.e. we allow training with a variable number

of global epochs.

• We work with GRU cells as an RNN network for the macro time series instead of LSTM cells. GRU

cells are typically faster at processing inputs than the LSTM network.

• We feed to the RNN of choice sequences of 12 months of macro data. According to a Ljung-Box test

we performed on the partial auto-correlation function of the macro data, 12 months are more than the

last significant lag for the macro time series.

• In our Pytorch setup, we need to set up two different optimizers, one for the SDF network, and one

for the Moments network. We use the same parameters for both optimizers, including learning rate,

i.e. we do not differentiate the hyperparameters of the optimizers based on the type of network.

The first two differences in our approach as listed above, are a consequence of the double index approach

for data management that is explained in section 2.4.

The space of the possible architectures is much larger for the GAN approach than for the Sharpe ratio

maximization and mispricing loss minimization approaches. Given computational constraints, we have tried

two different architecture definitions with the GAN approach for SDF estimation. They are distinguished

by the FFN subnetwork used in the SDF network to merge the macro hidden states with the individual

characteristics of the assets. In both architectures the macro states, for each of the SDF and Moments

networks, are produced via a GRU network with one hidden layer and a dimension of the hidden macro state

of 6. The latter is the same choice as in Chen et al. (2023).

Specifically, we consider the following models for the SDF network.

37



• Model 1 - SDF network: individual characteristics and the macro state produced by the GRU

network are passed together into one FFN network with 4 hidden layers and hidden units [64, 32, 16, 8].

• Model 2 - SDF network: individual characteristics are processed first through two FFN layers with

hidden units [32, 16]. Its output is combined with the macro state produced by the GRU network as

an input for a FFN with 6 layers with hidden units [64, 64, 32, 32, 16, 8].

For the Moments network we consider only one configuration given by

• Moments network: individual characteristics and the macro state produced by the GRU network

are passed together as input for a FFN network with 3 hidden layers and hidden units [32, 16, 8]. The

moments network outputs 6 assets, the same value for this hyperparameter as in Chen et al. (2023).

Regularization follows the same structure as the two approaches considered in the main paper. In

particular, we regularize by using batch-normalization in the SDF and Moments networks, as well as L1-

regularization, L2-regularization. Finally, we again use a dropout rate of 0.01.

We split the datasets that we use in the same way as for the approaches in the main paper: 42% train,

28% validation, and 30% test set. Furthermore, we normalize the portfolio weights produces by the SDF

and the Moments network as in the main body of the paper: through the L2-norm with an upper bound of

Cport = 1 if the dataset is a small balanced dataset of portfolios and Cbonds = 0.1 when considering bonds.

We evaluate models the same way as for the other approaches, explained in section 3.4 of the main paper.

Note here that, because of the loss of 12 months of data due to the RNN processing of sequences of macro

data, the test set for the GAN is shorter than in the respective estimations of the approaches with Sharpe

ratio maximization or mispricing loss minimization.

We apply this procedure with the limited hyperparameter search explained above to 3 datasets:

A. Individual bonds (see section 2 for more details)

B. Bond portfolios (see section 2 for more details)

C. 10 industry portfolios from Kenneth French’s website.

With the caveat that we have not performed a more extensive architecture and hyper-parameter search, we

find the following.

For the individual bonds data, we encounter to a large degree a form of mode collapse, even in the

model with the best hyper-parameters. Mode collapse is a typical failure that can occur when training

neural network architectures with a min-max approach, including the traditional GAN architectures for

image generation. In our case, mode collapse manifests itself in the weights of the portfolio being equal

to each other for each date, i.e. the portfolio produced consists of going either long or short the equally

weighted portfolio in the market. Obviously such a portfolio cannot be a good approximation of the SDF.

We hypothesise, without further investigation, that the mode collapse for the large dataset of bond-level

data can be overcome by searching over a larger space of hyper-parameters and architectures.

For the bond portfolio data, the best model does not suffer from mode collapse. It achieves larger Sharpe,

Sortino and Calmar ratios than the Sharpe ratio maximization approach and better maximum drawdown, but

at a higher mean leverage than the Sharpe ratio maximization approach, and at higher typical drawdowns.

In terms of alphas vs. SPY, FF3, FF5, GAN achieves alphas of the same magnitude as the Sharpe ratio

maximization approach but with slightly lower significance. See Tables A.6 and A.7 for more. Table A.5

contains the hyperparameters and architectures of the best model.
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For the stock portfolio data, GAN strongly outperforms the Sharpe ratio maximization approach in terms

of the Sharpe ratio on test set, but with a higher maximum drawdown, and higher leverage. It performs

somewhat worse than Sharpe ratio maximization in terms of excess returns against conventional risk factors,

albeit neither approach provides positive and significant alphas with respect to the conventional risk factors.

See Tables A.6 and A.7 for more. Table A.5 contains the hyperparameters and architectures of the best

model.

Finally, training the GAN network on the same hardware as the approaches in the main paper, is a

multiple of times more expensive in terms of computation hours than the networks above. More work is

needed for a better understanding of the performance across different datasets of the GAN approach, as well

as the two simpler approaches presented in the paper.

A.3.1 Tables - Performance of GAN relative to Sharpe ratio maximization ap-

proach

Environment Best model
Approach Data Architecture bs lr l2reg l1reg

GAN Bondpf + Macro Model 2 2048 0.001 0.01 0.01
GAN Stockpf + Macro Model 2 1024 0.005 none 0.01

Table A.5: Bond Portfolios - Best Models for SDF estimation

Notes: The environment describes the estimation method that was used and the data environment. The best model describes
the architecture, batch size (bs), learning rate (lr) and the L1 (l1reg) and L2 (l2reg) regularization for the model that obtained
the highest Sharpe ratio in the validation set.

Environment Results Test Set
Approach Data Sharpe Sortino Calmar Max-DD CAGR Max- lev Mean-lev

GAN Bondpf + Macro 0.30 47.23 0.06 0.04 0.03 0.59 0.55
SR Bondpf + Macro 0.24 12.28 0.03 0.07 0.02 1.14 0.44
GAN Stockpf + Macro 0.14 1.85 0.01 0.52 0.07 1.91 0.95
SR Stockpf + Macro 0.08 2.82 0.01 0.11 0.01 0.92 0.25

Table A.6: Bond and Stock Portfolios - Performance of GAN vs. Sharpe-ratio maximization approach

Notes: The environment describes the estimation method that was used and the data environment. The best model for each
environment is tabulated in Table A.5 in the appendix. The results show a set of financial ratios as described in more detail
in Section 3.4, as well as maximum drawdown (Max-DD), and the portfolio implied maximum leverage (Max-lev) and mean
leverage (Mean-lev). Sharpe, Sortino and Calmar ratios are monthly. All units are expressed in decimal points.
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Environment Alphas in Test Set
Approach Data S&P 500 FF 3 Factors FF 5 Factors

GAN Bondpf + Macro 0.001 0.001 0.001
(1.96) (1.74) (1.59)

SR Bondpf + Macro 0.001 0.001 0.001
(2.100) (1.900) (1.700)

GAN Stockpf + Macro -0.001 -0.001 -0.001
(-2.08) (-0.67) (-1.20)

SR Stockpf + Macro 0.001 0.001 0.001
(0.43) (0.73) (0.46)

Table A.7: Bond and Stock Portfolios - Excess Returns

Notes: The environment describes the estimation method that was used and the data environment. The best model for each
environment is tabulated in Table A.5. The excess returns (alphas) are the estimate of the intercept of the SDF return series on
the corresponding risk factors. The numbers in parentheses represent the t-statistic of the estimates. Bold means significance
at the 5% level. All alphas are expressed in decimal points and represent monthly excess returns.
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A.4 Summary statistics

median std 25th 75th counts
Portfolio

downside 1 0.477 0.980 0.102 0.932 484
downside 2 0.546 1.683 -0.108 1.244 484
downside 3 0.590 2.105 -0.293 1.484 484
downside 4 0.649 2.401 -0.577 1.786 484
downside 5 0.941 3.108 -0.639 2.191 484
idiovol 1 0.452 0.941 0.099 0.853 484
idiovol 2 0.533 1.672 -0.077 1.316 484
idiovol 3 0.607 2.075 -0.256 1.530 484
idiovol 4 0.631 2.431 -0.625 1.765 484
idiovol 5 0.884 3.126 -0.617 2.117 484
hkm 1 0.720 1.944 -0.231 1.561 484
hkm 2 0.566 1.717 -0.217 1.322 484
hkm 3 0.597 1.867 -0.156 1.389 484
hkm 4 0.587 2.011 -0.274 1.386 484
hkm 5 0.734 2.542 -0.505 1.870 484
maturity 1 0.504 1.053 0.094 1.014 484
maturity 2 0.628 1.567 -0.090 1.336 484
maturity 3 0.677 2.050 -0.371 1.609 484
maturity 4 0.676 2.166 -0.344 1.646 484
maturity 5 0.682 2.656 -0.739 2.114 484
rating 1 0.634 1.911 -0.411 1.462 484
rating 2 0.582 1.940 -0.358 1.547 484
rating 3 0.554 1.917 -0.348 1.535 484
rating 4 0.683 2.046 -0.329 1.653 484
rating 5 0.861 2.577 -0.264 1.798 484
reversal 1 0.721 1.814 -0.338 1.537 484
reversal 2 0.602 1.930 -0.404 1.570 484
reversal 3 0.585 1.893 -0.313 1.484 484
reversal 4 0.501 2.016 -0.238 1.314 484
reversal 5 0.682 2.646 -0.081 1.506 484
spread 1 0.423 1.439 -0.130 1.144 484
spread 2 0.501 1.735 -0.251 1.342 484
spread 3 0.536 1.831 -0.348 1.443 484
spread 4 0.561 1.835 -0.404 1.558 484
spread 5 0.649 1.879 -0.383 1.665 484
spread 6 0.729 1.918 -0.382 1.718 484
spread 7 0.763 1.905 -0.417 1.661 484
spread 8 0.752 1.962 -0.154 1.643 484
spread 9 0.814 2.249 -0.131 1.643 484
spread 10 1.043 3.751 -0.118 2.400 484

Table A.8: Bond Portfolio Returns - Summary Statistics

Notes: All summary statistics refer to monthly bond portfolio returns (in percent). The portfolio columns contains an acronym
of the bond portfolio as described in more detail in Section 2. The sample period spans February 1977 to December 2018 which
amounts to 484 monthly return observations for each portfolio.
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mean std median 25th 75th counts
Variable

b treasury 0.392 0.418 0.440 0.203 0.668 17,335
b creditspreads -2.468 2.786 -1.631 -3.753 -0.743 17,335
rel2high 0.975 0.041 0.993 0.967 1.000 17,335
lt rev 0.163 0.219 0.161 0.066 0.254 17,335
r12 2 0.004 0.022 0.004 -0.005 0.013 17,335
r12 7 0.017 0.056 -0.01 0.014 0.041 17,335
r2 1 0.004 0.022 0.004 -0.005 0.013 17,335
r36 13 0.076 0.146 0.065 0.016 0.135 17,335
variance40 0.016 0.023 0.008 0.005 0.017 17,335

Table A.9: Summary Statistics of features for the bond portfolios dataset

Notes: All summary statistics refer to monthly observations. Returns are expressed in percent. More details regarding the data
construction can be found in Section 2.
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mean std median 25th 75th counts
Variable

ret e 0.004 0.057 0.003 -0.006 0.013 438,738
coupon 6.976 2.639 7.000 5.050 8.750 438,738
lag sp rat 9.156 4.512 8.000 6.000 11.000 438,738
lag moody rat 9.118 4.183 8.000 6.000 11.000 438,738
lag amt out 429,445.794 551,591.483 250,000.000 100,000.000 500,000.000 438,738
lag accrued interest 1.857 1.292 1.613 0.800 2.675 438,738
lag tau 11.530 9.712 8.048 4.760 17.516 438,738
lag age 4.760 4.871 3.369 1.511 6.188 438,738
ytm 7.205 5.016 6.836 4.280 9.223 438,738
lag bond price 99.203 13.945 101.082 95.000 106.500 438,738
a2me 2.008 3.470 1.376 0.825 2.264 438,738
ac -0.014 3.084 -0.001 -0.085 0.084 438,738
at 24,099.430 43,099.995 8,308.100 2,647.301 24,454.000 438,738
ato 1.945 2.708 1.643 0.996 2.591 438,738
beme 0.678 0.775 0.516 0.302 0.845 438,738
c 0.077 0.095 0.043 0.016 0.099 438,738
cf 0.059 2.488 0.053 -0.054 0.172 438,738
cf2p 0.220 0.393 0.163 0.096 0.300 438,738
cto 1.131 0.787 0.973 0.603 1.424 438,738
d2a 0.045 0.025 0.041 0.029 0.056 438,738
d2p 0.001 0.006 0.000 0.000 0.000 438,738
dpi2a 0.071 0.237 0.043 0.007 0.100 438,738
e2p 0.030 0.438 0.057 0.035 0.086 438,738
fc2y 0.226 1.264 0.181 0.101 0.288 438,738
investment 0.105 0.388 0.055 -0.006 0.131 438,738
lt rev 0.689 1.384 0.465 0.014 1.028 438,738
lev 0.470 0.204 0.447 0.336 0.585 438,738
lturnover 1.339 1.670 0.901 0.471 1.638 438,738
ni 1,378.718 3,704.280 301.000 58.104 1,300.000 438,738
noa 0.659 0.365 0.654 0.516 0.777 438,738
oa 0.004 1.497 -0.002 -0.006 0.000 438,738
ol 0.894 0.682 0.762 0.428 1.155 438,738
op 2,961.627 5,295.489 900.000 243.326 2,965.000 438,738
pcm 0.366 0.450 0.329 0.235 0.480 438,738
pm 0.106 2.011 0.105 0.063 0.171 438,738
prof 1.368 9.862 0.769 0.504 1.163 438,738
q 0.824 0.747 0.611 0.334 1.087 438,738
rna 0.190 0.387 0.174 0.103 0.266 438,738
roa 0.055 0.064 0.056 0.027 0.085 438,738
roe 0.215 7.406 0.141 0.072 0.215 438,738
rel2high 0.855 0.169 0.912 0.785 0.990 438,738
s2p 2.085 4.059 1.202 0.588 2.334 438,738
sga2s 0.188 1.076 0.158 0.092 0.246 438,738
variance40 0.001 0.002 0.000 0.000 0.000 438,738
capm b mkt 0.996 0.415 0.961 0.718 1.225 438,738
ff3 ivol 0.017 0.009 0.014 0.011 0.019 438,738
lme 28,390.790 67,267.677 5,996.630 1,554.660 24,858.053 438,738
r12 2 0.116 0.351 0.093 -0.070 0.266 438,738
r12 7 0.057 0.234 0.048 -0.064 0.164 438,738
r2 1 0.011 0.099 0.010 -0.039 0.059 438,738
r36 13 0.291 0.641 0.209 -0.051 0.520 438,738

Table A.10: Summary Statistics Individual Bond Return Dataset

Notes: All summary statistics refer to monthly observations. Returns are expressed in percent. More details regarding the data
construction can be found in Section 2. The sample period spans February 1973 to January 2020.
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mean std median 25th 75th counts
Variable

RPI 0.002 0.008 0.002 0.000 0.004 572
W875RX1 0.002 0.007 0.003 -0.000 0.005 572
DPCERA3M086SBEA 0.002 0.009 0.002 -0.000 0.005 572
CMRMTSPLx 0.002 0.011 0.002 -0.003 0.008 572
RETAILx 0.004 0.016 0.005 -0.001 0.010 572
INDPRO 0.001 0.010 0.002 -0.002 0.006 572
IPFPNSS 0.001 0.011 0.002 -0.003 0.006 572
IPFINAL 0.001 0.012 0.002 -0.003 0.007 572
IPCONGD 0.001 0.011 0.001 -0.004 0.006 572
IPDCONGD 0.001 0.035 0.001 -0.008 0.013 572
IPNCONGD 0.001 0.008 0.001 -0.004 0.006 572
IPBUSEQ 0.003 0.018 0.004 -0.004 0.010 572
IPMAT 0.002 0.010 0.002 -0.002 0.007 572
IPDMAT 0.002 0.016 0.004 -0.003 0.010 572
IPNMAT 0.001 0.011 0.001 -0.004 0.006 572
IPMANSICS 0.001 0.012 0.002 -0.002 0.007 572
IPB51222S 0.001 0.039 0.001 -0.019 0.024 572
IPFUELS 0.001 0.022 0.002 -0.011 0.011 572
CUMFNS -0.027 0.818 0.029 -0.333 0.332 572
HWI 4.657 195.227 6.000 -97.250 103.500 572
HWIURATIO -0.001 0.043 0.002 -0.017 0.020 572
CLF16OV 0.001 0.003 0.001 -0.000 0.002 572
CE16OV 0.001 0.007 0.001 -0.000 0.003 572
UNRATE 0.005 0.492 0.000 -0.100 0.100 572
UEMPMEAN 0.017 0.872 0.000 -0.300 0.400 572
UEMPLT5 0.000 0.102 0.002 -0.035 0.036 572
UEMP5TO14 0.001 0.092 -0.002 -0.033 0.032 572
UEMP15OV 0.004 0.063 -0.001 -0.029 0.030 572
UEMP15T26 0.004 0.093 0.000 -0.045 0.049 572
UEMP27OV 0.003 0.065 -0.003 -0.035 0.038 572
CLAIMSx 0.002 0.121 -0.003 -0.028 0.025 572
PAYEMS 0.001 0.007 0.001 0.000 0.002 572
USGOOD -0.000 0.007 0.001 -0.002 0.002 572
CES1021000001 -0.000 0.018 0.001 -0.005 0.006 572
USCONS 0.001 0.010 0.002 -0.002 0.005 572
MANEMP -0.001 0.006 0.000 -0.002 0.002 572
DMANEMP -0.001 0.007 0.000 -0.002 0.002 572
NDMANEMP -0.001 0.005 -0.000 -0.002 0.001 572
SRVPRD 0.001 0.007 0.002 0.001 0.003 572
USTPU 0.001 0.006 0.001 -0.000 0.002 572
USWTRADE 0.001 0.004 0.001 -0.000 0.002 572
USTRADE 0.001 0.008 0.001 -0.000 0.003 572
USFIRE 0.001 0.002 0.001 0.000 0.003 572
USGOVT 0.001 0.003 0.001 -0.000 0.002 572

Table A.11: Macro Series - Summary Statistics

Notes: All summary statistics refer to monthly observations. The sample period spans the period from February 1973 to
September 2020
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mean std median 25th 75th counts
Variable

CES0600000007 40.340 0.676 40.300 39.900 40.900 572
AWOTMAN 0.000 0.145 0.000 -0.100 0.100 572
AWHMAN 40.848 0.769 40.900 40.400 41.400 572
HOUST 7.193 0.328 7.268 7.035 7.421 572
HOUSTNE 4.947 0.385 4.966 4.736 5.187 572
HOUSTMW 5.480 0.434 5.585 5.159 5.799 572
HOUSTS 6.416 0.310 6.461 6.249 6.638 572
HOUSTW 5.775 0.394 5.855 5.576 6.046 572
PERMIT 7.169 0.320 7.231 6.989 7.415 572
PERMITNE 4.975 0.355 4.973 4.762 5.193 572
PERMITMW 5.444 0.395 5.513 5.197 5.759 572
PERMITS 6.355 0.326 6.397 6.169 6.588 572
PERMITW 5.799 0.390 5.878 5.595 6.048 572
AMDMNOx 0.003 0.041 0.004 -0.017 0.028 572
ANDENOx 0.003 0.082 0.003 -0.040 0.051 572
AMDMUOx 0.004 0.010 0.003 -0.002 0.009 572
BUSINVx 0.004 0.006 0.004 0.001 0.007 572
ISRATIOx -0.000 0.022 0.000 -0.010 0.010 572
M1SL 0.000 0.070 0.000 -0.004 0.004 572
M2SL 0.000 0.004 0.000 -0.001 0.002 572
M2REAL 0.002 0.006 0.002 -0.001 0.004 572
BOGMBASE 0.000 0.023 0.001 -0.007 0.008 572
TOTRESNS -0.000 0.072 0.003 -0.024 0.025 572
NONBORRES -0.000 1.141 0.003 -0.027 0.027 572
BUSLOANS -0.000 0.009 -0.000 -0.004 0.003 572
REALLN -0.000 0.005 0.000 -0.002 0.002 572
NONREVSL -0.000 0.008 -0.000 -0.002 0.002 572
CONSPI 0.000 0.001 0.000 -0.000 0.001 572
S&P 500 0.006 0.037 0.009 -0.012 0.029 572
S&P: indust 0.006 0.037 0.010 -0.012 0.030 572
S&P div yield -0.002 0.123 -0.009 -0.057 0.047 572
S&P PE ratio 0.001 0.049 0.002 -0.020 0.024 572
FEDFUNDS -0.010 0.551 0.010 -0.080 0.100 572
CP3Mx -0.009 0.544 0.000 -0.092 0.120 572
TB3MS -0.009 0.458 0.000 -0.090 0.120 572
TB6MS -0.010 0.427 0.000 -0.090 0.110 572
GS1 -0.010 0.446 0.000 -0.130 0.130 572
GS5 -0.011 0.343 -0.020 -0.180 0.160 572
GS10 -0.010 0.299 -0.020 -0.163 0.160 572
AAA -0.008 0.241 -0.020 -0.120 0.100 572
BAA -0.008 0.234 -0.020 -0.133 0.100 572
COMPAPFFx 0.020 0.389 0.060 -0.060 0.190 572
TB3SMFFM -0.504 0.725 -0.250 -0.712 -0.060 572
TB6SMFFM -0.387 0.778 -0.145 -0.590 0.030 572

Table A.12: Macro Series - Summary Statistics

Notes: All summary statistics refer to monthly observations. The sample period spans the period from February 1973 to
September 2020
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mean std median 25th 75th counts
Variable

T1YFFM 0.004 0.790 0.120 -0.173 0.400 572
T5YFFM 0.754 1.443 0.975 0.117 1.722 572
T10YFFM 1.159 1.730 1.400 0.237 2.380 572
AAAFFM 2.312 2.010 2.520 1.278 3.750 572
BAAFFM 3.400 2.065 3.765 2.190 4.918 572
TWEXAFEGSMTHx -0.000 0.017 0.001 -0.011 0.010 572
EXSZUSx -0.002 0.028 -0.001 -0.019 0.016 572
EXJPUSx -0.002 0.026 0.000 -0.016 0.015 572
EXUSUKx -0.001 0.024 -0.000 -0.014 0.014 572
EXCAUSx 0.000 0.015 0.000 -0.008 0.010 572
WPSFD49207 -0.000 0.007 -0.000 -0.004 0.003 572
WPSFD49502 -0.000 0.010 -0.000 -0.004 0.004 572
WPSID61 0.000 0.008 -0.000 -0.003 0.003 572
WPSID62 0.000 0.046 -0.000 -0.018 0.018 572
OILPRICEx -0.000 0.117 0.000 -0.057 0.052 572
PPICMM -0.000 0.035 -0.001 -0.018 0.019 572
CPIAUCSL -0.000 0.003 -0.000 -0.001 0.002 572
CPIAPPSL -0.000 0.006 -0.000 -0.003 0.003 572
CPITRNSL 0.000 0.012 -0.000 -0.005 0.005 572
CPIMEDSL -0.000 0.002 -0.000 -0.001 0.001 572
CUSR0000SAC -0.000 0.006 -0.000 -0.003 0.003 572
CUSR0000SAD 0.000 0.003 -0.000 -0.002 0.002 572
CUSR0000SAS -0.000 0.002 -0.000 -0.001 0.001 572
CPIULFSL 0.000 0.003 -0.000 -0.002 0.002 572
CUSR0000SA0L2 -0.000 0.004 -0.000 -0.002 0.002 572
CUSR0000SA0L5 -0.000 0.003 -0.000 -0.002 0.002 572
PCEPI -0.000 0.002 0.000 -0.001 0.001 572
DDURRG3M086SBEA -0.000 0.003 -0.000 -0.002 0.002 572
DNDGRG3M086SBEA -0.000 0.007 -0.000 -0.003 0.003 572
DSERRG3M086SBEA 0.000 0.002 -0.000 -0.001 0.001 572
CES0600000008 -0.000 0.004 -0.000 -0.002 0.002 572
CES2000000008 -0.000 0.008 -0.000 -0.003 0.003 572
CES3000000008 -0.000 0.004 -0.000 -0.002 0.002 572
MZMSL 0.000 0.007 0.000 -0.002 0.002 572
DTCOLNVHFNM 0.000 0.027 0.000 -0.007 0.007 572
DTCTHFNM 0.000 0.022 0.000 -0.005 0.005 572
INVEST 0.000 0.010 0.000 -0.005 0.005 572
VXOCLSx 20.074 7.682 18.473 14.885 23.228 572
dp tr gw -0.001 0.048 -0.004 -0.030 0.026 572
bm tr gw -0.002 0.063 -0.006 -0.033 0.019 572
ntis tr gw -0.000 0.008 0.000 -0.002 0.002 572
tms tr gw 1.663 1.266 1.755 0.690 2.670 572
dfy tr gw 0.001 0.125 -0.010 -0.050 0.040 572
rvar crsp tr gw 0.001 2.996 -0.080 -1.633 1.520 572

Table A.13: Macro Series - Summary Statistics

Notes: All summary statistics refer to monthly observations. The sample period spans the period from February 1973 to
September 2020
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A.5 Predictive regressions

CP08 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 R2

PF

downside 1 7.71 0.04
(3.58)

downside 1 3.42 0.06 0.02 0.05 0.00 0.01 0.04 0.06 0.00 0.12
(5.48) (0.03) (0.03) (0.02) (0.04) (0.04) (0.03) (0.03) (0.03)

downside 2 12.63 0.03
(5.96)

downside 2 1.56 0.06 0.06 0.11 -0.01 0.00 0.04 0.14 0.05 0.11
(9.14) (0.06) (0.06) (0.04) (0.07) (0.08) (0.06) (0.06) (0.06)

downside 3 12.00 0.02
(7.17)

downside 3 -1.01 0.10 0.05 0.14 -0.05 -0.00 0.09 0.10 -0.00 0.08
(10.75) (0.08) (0.07) (0.05) (0.08) (0.08) (0.06) (0.07) (0.07)

downside 4 13.20 0.02
(7.42)

downside 4 -1.10 0.14 0.05 0.14 -0.07 -0.01 0.12 0.07 -0.03 0.08
(11.52) (0.09) (0.08) (0.06) (0.09) (0.09) (0.07) (0.09) (0.09)

downside 5 22.12 0.03
(7.58)

downside 5 0.17 0.07 0.19 0.17 -0.04 -0.07 -0.16 0.17 0.01 0.08
(13.31) (0.13) (0.09) (0.08) (0.10) (0.10) (0.12) (0.11) (0.12)

idiovol 1 6.62 0.03
(3.48)

idiovol 1 2.36 0.05 0.02 0.04 0.00 0.01 0.04 0.06 -0.01 0.11
(5.23) (0.03) (0.03) (0.02) (0.04) (0.04) (0.03) (0.03) (0.03)

idiovol 2 11.39 0.03
(5.92)

idiovol 2 1.04 0.10 0.04 0.11 -0.02 -0.01 0.09 0.07 -0.02 0.11
(8.94) (0.06) (0.05) (0.04) (0.07) (0.07) (0.05) (0.05) (0.05)

idiovol 3 14.04 0.03
(6.88)

idiovol 3 2.54 0.13 0.04 0.12 -0.06 -0.00 0.10 0.07 -0.03 0.09
(10.75) (0.08) (0.07) (0.06) (0.08) (0.08) (0.07) (0.08) (0.08)

idiovol 4 14.12 0.02
(7.44)

idiovol 4 -0.29 0.12 0.06 0.15 -0.06 -0.01 0.09 0.09 -0.02 0.08
(11.67) (0.09) (0.08) (0.06) (0.09) (0.09) (0.08) (0.08) (0.09)

idiovol 5 19.89 0.02
(7.90)

idiovol 5 -3.20 0.01 0.22 0.17 -0.03 -0.07 -0.20 0.22 0.14 0.09
(13.28) (0.11) (0.09) (0.07) (0.09) (0.10) (0.12) (0.11) (0.13)

hkm 1 14.00 0.03
(4.58)

hkm 1 5.73 0.04 0.06 0.10 0.01 -0.01 -0.01 0.04 -0.03 0.06
(9.12) (0.07) (0.06) (0.05) (0.05) (0.06) (0.06) (0.07) (0.08)

hkm 2 13.33 0.03
(5.72)

hkm 2 4.98 0.07 0.03 0.11 -0.01 0.02 0.07 0.09 -0.02 0.10
(8.69) (0.07) (0.06) (0.04) (0.06) (0.07) (0.05) (0.06) (0.06)

hkm 3 12.96 0.03
(6.74)

hkm 3 4.21 0.11 0.02 0.09 -0.03 0.01 0.10 0.08 -0.02 0.09
(9.79) (0.07) (0.06) (0.05) (0.08) (0.08) (0.06) (0.06) (0.06)

hkm 4 12.21 0.02
(6.96)

Table A.14: In-sample predictive Regression Table 1

Notes: The table reports estimates from OLS regressions of excess bond returns on the lagged variables. The dependent variable
rxt+1, is the excess monthly log return on the corporate bond portfolio. CP08 is the weighted combination of forward spreads
on the treasury yield curve as constructed in Cochrane and Piazessi (2008). PC1-PC8 denote factors estimated by principal
components analysis using a panel of data with 132 individual series over the period 1977:01-2018:11. Heteroskedasticity robust
standard errors are reported in parentheses. Coefficients that are statistically significant at the 5% or better level are highlighted
in bold. All specifications include a constant. The sample period spans 1977:02-2018:12
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CP08 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 R2

PF

hkm 4 1.22 0.10 0.04 0.13 -0.04 -0.00 0.07 0.08 0.01 0.09
(10.19) (0.06) (0.06) (0.05) (0.08) (0.09) (0.06) (0.06) (0.06)

hkm 5 17.18 0.03
(7.22)

hkm 5 -10.50 0.09 0.21 0.18 -0.07 -0.09 -0.04 0.18 0.02 0.10
(11.75) (0.10) (0.08) (0.07) (0.09) (0.09) (0.08) (0.09) (0.09)

maturity 1 6.18 0.02
(3.71)

maturity 1 -0.74 0.07 0.04 0.05 -0.01 -0.02 0.02 0.07 -0.01 0.09
(5.55) (0.04) (0.04) (0.03) (0.04) (0.05) (0.04) (0.04) (0.04)

maturity 2 11.60 0.03
(5.39)

maturity 2 0.63 0.08 0.06 0.09 -0.02 -0.02 0.04 0.08 -0.01 0.09
(8.14) (0.06) (0.05) (0.04) (0.06) (0.07) (0.05) (0.05) (0.05)

maturity 3 15.42 0.03
(6.24)

maturity 3 -1.98 0.07 0.12 0.13 -0.03 -0.04 0.03 0.12 -0.01 0.09
(10.15) (0.09) (0.06) (0.06) (0.08) (0.08) (0.07) (0.07) (0.07)

maturity 4 15.43 0.03
(6.89)

maturity 4 1.80 0.09 0.05 0.14 -0.03 -0.01 0.08 0.09 -0.01 0.09
(10.68) (0.08) (0.07) (0.05) (0.08) (0.09) (0.06) (0.07) (0.07)

maturity 5 16.34 0.02
(7.36)

maturity 5 -1.53 0.13 0.04 0.22 -0.06 -0.01 0.14 0.11 -0.03 0.11
(12.30) (0.09) (0.08) (0.07) (0.08) (0.09) (0.07) (0.10) (0.11)

rating 1 12.18 0.02
(6.26)

rating 1 1.85 0.12 -0.00 0.14 -0.06 0.01 0.14 0.08 -0.03 0.12
(9.43) (0.05) (0.06) (0.05) (0.07) (0.07) (0.05) (0.06) (0.07)

rating 2 12.39 0.02
(6.17)

rating 2 0.03 0.11 0.03 0.15 -0.03 -0.00 0.11 0.07 -0.04 0.11
(9.52) (0.07) (0.06) (0.05) (0.07) (0.08) (0.05) (0.06) (0.06)

rating 3 13.45 0.03
(6.14)

rating 3 2.70 0.12 0.04 0.10 -0.05 -0.00 0.06 0.08 -0.04 0.09
(9.36) (0.08) (0.06) (0.04) (0.07) (0.08) (0.06) (0.06) (0.06)

rating 4 12.66 0.02
(6.35)

rating 4 -2.30 0.07 0.10 0.10 -0.01 -0.03 0.04 0.11 0.02 0.07
(10.07) (0.09) (0.07) (0.06) (0.08) (0.08) (0.07) (0.07) (0.07)

rating 5 18.19 0.03
(5.65)

rating 5 -3.75 -0.00 0.22 0.12 0.02 -0.10 -0.14 0.15 0.04 0.08
(11.75) (0.12) (0.07) (0.08) (0.08) (0.08) (0.10) (0.09) (0.09)

reversal 1 12.58 0.03
(5.30)

reversal 1 2.72 0.08 0.06 0.11 -0.01 0.01 0.04 0.07 -0.00 0.09
(8.88) (0.07) (0.06) (0.04) (0.06) (0.06) (0.05) (0.06) (0.06)

reversal 2 12.13 0.02
(5.83)

reversal 2 3.84 0.07 0.02 0.11 -0.01 0.00 0.07 0.05 -0.02 0.07

Table A.15: In-sample predictive Regression Table 2

Notes: The table reports estimates from OLS regressions of excess bond returns on the lagged variables. The dependent variable
rxt+1, is the excess monthly log return on the corporate bond portfolio. CP08 is the a weighted combination of forward spreads
on the treasury yield curve as constructed in Cochrane and Piazessi (2008). PC1-PC8 denote factors estimated by principal
components analysis using a panel of data with 132 individual series over the period 1977:01-2018:11. Heteroskedasticity robust
standard errors are reported in parentheses. Coefficients that are statistically significant at the 5% or better level are highlighted
in bold. All specifications include a constant. The sample period spans 1977:02-2018:12
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CP08 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 R2

PF

(9.62) (0.07) (0.06) (0.05) (0.07) (0.07) (0.06) (0.06) (0.07)
reversal 3 13.05 0.03

(6.03)
reversal 3 0.49 0.10 0.04 0.13 -0.03 -0.01 0.10 0.13 0.00 0.11

(9.82) (0.06) (0.06) (0.05) (0.07) (0.07) (0.06) (0.06) (0.06)
reversal 4 11.10 0.02

(6.78)
reversal 4 -0.43 0.15 0.03 0.12 -0.06 -0.02 0.09 0.04 -0.03 0.09

(10.40) (0.06) (0.06) (0.05) (0.08) (0.08) (0.06) (0.07) (0.06)
reversal 5 21.26 0.04

(7.36)
reversal 5 0.18 0.09 0.13 0.15 -0.07 -0.06 -0.08 0.27 0.01 0.10

(11.44) (0.10) (0.08) (0.07) (0.09) (0.10) (0.10) (0.10) (0.10)
spread 1 9.53 0.02

(4.11)
spread 1 -2.68 0.10 0.02 0.12 -0.03 -0.04 0.10 0.07 -0.03 0.12

(6.92) (0.04) (0.04) (0.03) (0.05) (0.05) (0.04) (0.05) (0.05)
spread 2 10.39 0.02

(5.00)
spread 2 -2.28 0.10 0.02 0.14 -0.04 -0.00 0.13 0.10 -0.06 0.13

(8.04) (0.06) (0.05) (0.04) (0.06) (0.06) (0.05) (0.06) (0.06)
spread 3 11.82 0.02

(5.04)
spread 3 0.46 0.10 0.02 0.14 -0.03 -0.00 0.10 0.08 -0.04 0.11

(8.38) (0.06) (0.06) (0.05) (0.06) (0.06) (0.05) (0.07) (0.07)
spread 4 11.04 0.02

(4.78)
spread 4 1.38 0.09 0.02 0.13 -0.02 0.01 0.10 0.06 -0.05 0.09

(8.53) (0.06) (0.05) (0.05) (0.06) (0.06) (0.05) (0.07) (0.07)
spread 5 10.27 0.02

(5.38)
spread 5 0.42 0.11 0.03 0.12 -0.03 0.02 0.09 0.07 -0.04 0.09

(8.49) (0.06) (0.05) (0.04) (0.06) (0.06) (0.05) (0.06) (0.06)
spread 6 10.72 0.02

(5.54)
spread 6 0.45 0.09 0.05 0.10 -0.02 0.01 0.08 0.08 -0.03 0.08

(8.63) (0.06) (0.06) (0.04) (0.06) (0.07) (0.05) (0.06) (0.06)
spread 7 11.12 0.02

(5.17)
spread 7 -2.45 0.07 0.09 0.10 -0.01 -0.02 0.05 0.11 -0.02 0.07

(8.82) (0.08) (0.06) (0.05) (0.06) (0.07) (0.06) (0.06) (0.06)
spread 8 10.37 0.02

(5.48)
spread 8 -3.00 0.04 0.12 0.09 0.01 -0.02 0.02 0.10 0.05 0.06

(9.17) (0.08) (0.06) (0.06) (0.07) (0.07) (0.07) (0.07) (0.07)
spread 9 11.55 0.01

(5.54)
spread 9 -8.91 0.02 0.17 0.12 0.01 -0.08 -0.02 0.13 0.05 0.06

(10.27) (0.10) (0.07) (0.07) (0.08) (0.08) (0.09) (0.09) (0.08)
spread 10 23.56 0.02

(6.12)
spread 10 -7.76 -0.08 0.34 0.13 0.05 -0.16 -0.36 0.30 -0.00 0.10

(14.61) (0.17) (0.11) (0.12) (0.11) (0.10) (0.15) (0.15) (0.14)

Table A.16: In-sample predictive Regression Table 3

Notes: The table reports estimates from OLS regressions of excess returns of bond portfolios on the lagged variables. The
dependent variable rxt+1 is the excess monthly log return on the corporate bond portfolio. CP08 is the a weighted combination
of forward spreads on the treasury yield curve as constructed in Cochrane and Piazessi (2008). PC1-PC8 denote factors
estimated by principal components analysis using a panel of data with 132 individual series over the period 1977:01-2018:11.
Heteroskedasticity robust standard errors are reported in parentheses. Coefficients that are statistically significant at the 5%
or better level are highlighted in bold. All specifications include a constant. The sample period spans 1977:02-2018:12
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CP08 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 R2

PF

downside 1 6.55 0.04
(2.84)

downside 1 6.93 0.05 0.01 0.03 0.00 0.03 0.01 0.00 -0.03 0.10
(2.67) (0.02) (0.04) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03)

downside 2 11.38 0.04
(4.70)

downside 2 10.46 0.07 0.00 0.06 -0.01 0.06 0.05 -0.01 -0.05 0.10
(4.53) (0.03) (0.06) (0.03) (0.05) (0.05) (0.05) (0.06) (0.05)

downside 3 11.47 0.02
(5.55)

downside 3 10.67 0.08 0.01 0.06 0.00 0.10 0.03 -0.02 -0.08 0.07
(5.54) (0.03) (0.07) (0.03) (0.05) (0.07) (0.05) (0.06) (0.06)

downside 4 12.10 0.02
(5.78)

downside 4 11.42 0.09 0.00 0.06 0.02 0.10 0.01 -0.03 -0.07 0.06
(5.82) (0.04) (0.08) (0.04) (0.06) (0.07) (0.07) (0.08) (0.07)

downside 5 18.74 0.03
(6.13)

downside 5 12.04 0.09 -0.12 0.03 -0.02 0.11 -0.05 -0.13 -0.16 0.09
(6.51) (0.06) (0.09) (0.06) (0.07) (0.10) (0.10) (0.12) (0.09)

idiovol 1 5.48 0.03
(2.70)

idiovol 1 5.91 0.05 0.01 0.03 -0.00 0.03 0.00 0.01 -0.03 0.10
(2.47) (0.02) (0.04) (0.02) (0.03) (0.03) (0.02) (0.03) (0.03)

idiovol 2 9.82 0.03
(4.72)

idiovol 2 9.16 0.08 0.00 0.05 0.01 0.07 0.02 -0.02 -0.05 0.09
(4.56) (0.03) (0.06) (0.03) (0.04) (0.05) (0.04) (0.05) (0.05)

idiovol 3 12.96 0.03
(5.36)

idiovol 3 13.11 0.09 0.02 0.05 0.01 0.08 -0.01 -0.03 -0.09 0.08
(5.33) (0.04) (0.07) (0.03) (0.05) (0.07) (0.06) (0.07) (0.06)

idiovol 4 13.26 0.02
(5.80)

idiovol 4 12.15 0.09 0.00 0.06 0.01 0.11 0.02 -0.03 -0.08 0.07
(5.83) (0.04) (0.08) (0.04) (0.06) (0.08) (0.06) (0.08) (0.07)

idiovol 5 17.15 0.02
(6.39)

idiovol 5 9.64 0.07 -0.12 0.03 -0.02 0.10 0.04 -0.12 -0.12 0.07
(7.00) (0.05) (0.09) (0.06) (0.07) (0.09) (0.12) (0.14) (0.09)

hkm 1 10.74 0.03
(3.61)

hkm 1 5.94 0.04 -0.09 0.03 0.03 0.07 0.05 -0.03 -0.08 0.07
(3.83) (0.03) (0.06) (0.04) (0.04) (0.05) (0.05) (0.05) (0.06)

hkm 2 11.63 0.04
(4.51)

hkm 2 10.38 0.06 -0.01 0.05 0.00 0.08 0.03 -0.00 -0.06 0.09
(4.42) (0.03) (0.06) (0.03) (0.04) (0.06) (0.05) (0.06) (0.05)

hkm 3 12.38 0.04
(5.24)

hkm 3 13.41 0.08 0.04 0.05 0.01 0.07 0.02 -0.01 -0.07 0.08
(5.03) (0.03) (0.07) (0.03) (0.05) (0.06) (0.05) (0.05) (0.05)

hkm 4 12.92 0.03
(5.33)

Table A.17: Out-of-sample predictive Regression Table 1

Notes: The table reports estimates from OLS regressions of excess bond returns on the lagged variables. The dependent variable
rxt+1, is the excess monthly log return on the corporate bond portfolio. All factors are constructed with information in the t
information set only. In particular, the Cochrane-Piazessi factor, CP08, is recursively estimated in analogy to Cochrane and
Piazessi (2008). PC1-PC8 denote factors estimated recursively by principal components analysis using a panel of data with
132 individual series. Heteroskedasticity robust standard errors are reported in parentheses. Coefficients that are statistically
significant at the 5% or better level are highlighted in bold. All specifications include a constant. The full sample period spans
1977:02-2018:12.
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CP08 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 R2

PF

hkm 4 12.41 0.08 0.04 0.07 -0.03 0.08 0.04 -0.04 -0.06 0.09
(5.12) (0.03) (0.07) (0.03) (0.06) (0.06) (0.05) (0.05) (0.05)

hkm 5 15.81 0.03
(5.59)

hkm 5 10.47 0.10 -0.10 0.04 -0.00 0.12 0.05 -0.02 -0.10 0.10
(5.72) (0.04) (0.08) (0.04) (0.06) (0.08) (0.07) (0.08) (0.07)

maturity 1 5.05 0.02
(2.83)

maturity 1 5.11 0.06 -0.00 0.02 -0.00 0.04 -0.01 0.00 -0.04 0.08
(2.70) (0.02) (0.04) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03)

maturity 2 9.53 0.03
(4.17)

maturity 2 8.49 0.07 -0.01 0.03 0.01 0.07 0.02 -0.00 -0.05 0.08
(4.03) (0.03) (0.06) (0.03) (0.04) (0.05) (0.04) (0.05) (0.04)

maturity 3 13.02 0.03
(4.97)

maturity 3 10.31 0.08 -0.05 0.03 0.00 0.10 0.02 0.01 -0.10 0.08
(4.97) (0.04) (0.07) (0.04) (0.05) (0.07) (0.06) (0.07) (0.06)

maturity 4 13.77 0.03
(5.34)

maturity 4 11.88 0.08 -0.02 0.05 0.02 0.09 0.05 -0.01 -0.08 0.08
(5.27) (0.04) (0.08) (0.04) (0.06) (0.07) (0.05) (0.06) (0.06)

maturity 5 15.67 0.03
(5.68)

maturity 5 12.08 0.09 -0.05 0.10 0.01 0.09 0.08 -0.01 -0.10 0.09
(5.80) (0.05) (0.09) (0.04) (0.06) (0.07) (0.07) (0.08) (0.09)

rating 1 12.11 0.03
(4.72)

rating 1 11.94 0.08 0.02 0.07 0.01 0.05 0.06 -0.02 -0.05 0.09
(4.69) (0.03) (0.07) (0.03) (0.05) (0.05) (0.05) (0.05) (0.06)

rating 2 11.62 0.03
(4.84)

rating 2 9.93 0.08 -0.01 0.07 0.00 0.08 0.04 -0.02 -0.06 0.09
(4.73) (0.03) (0.07) (0.03) (0.05) (0.06) (0.05) (0.06) (0.06)

rating 3 11.87 0.03
(4.80)

rating 3 11.27 0.09 -0.00 0.04 0.01 0.08 0.02 0.01 -0.06 0.08
(4.66) (0.03) (0.06) (0.03) (0.05) (0.06) (0.05) (0.06) (0.05)

rating 4 10.78 0.02
(5.00)

rating 4 8.80 0.08 -0.02 0.02 0.01 0.11 0.05 0.01 -0.11 0.08
(4.95) (0.04) (0.07) (0.04) (0.05) (0.07) (0.06) (0.07) (0.06)

rating 5 13.40 0.02
(4.60)

rating 5 6.93 0.05 -0.16 -0.00 0.01 0.11 -0.02 0.01 -0.14 0.07
(5.20) (0.05) (0.07) (0.05) (0.06) (0.09) (0.09) (0.09) (0.08)

reversal 1 12.53 0.04
(4.24)

reversal 1 10.66 0.07 -0.03 0.04 -0.02 0.06 0.03 0.01 -0.02 0.09
(4.07) (0.03) (0.05) (0.03) (0.04) (0.06) (0.05) (0.06) (0.06)

reversal 2 11.44 0.03
(4.59)

reversal 2 10.75 0.06 0.01 0.05 0.01 0.07 0.02 -0.06 -0.03 0.06

Table A.18: Out-of-sample predictive Regression Table 2

Notes: The table reports estimates from OLS regressions of excess bond returns on the lagged variables. The dependent variable
rxt+1, is the excess monthly log return on the corporate bond portfolio. All factors are constructed with information in the t
information set only. In particular, the Cochrane-Piazessi factor, CP08, is recursively estimated in analogy to Cochrane and
Piazessi (2008). PC1-PC8 denote factors estimated recursively by principal components analysis using a panel of data with
132 individual series. Heteroskedasticity robust standard errors are reported in parentheses. Coefficients that are statistically
significant at the 5% or better level are highlighted in bold. All specifications include a constant. The full sample period spans
1977:02-2018:12.
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CP08 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 R2

PF

(4.60) (0.03) (0.06) (0.03) (0.05) (0.06) (0.05) (0.06) (0.05)
reversal 3 11.57 0.03

(4.71)
reversal 3 11.65 0.08 0.02 0.06 0.01 0.06 0.06 0.01 -0.05 0.09

(4.73) (0.03) (0.06) (0.03) (0.05) (0.05) (0.04) (0.05) (0.05)
reversal 4 9.13 0.02

(5.29)
reversal 4 8.18 0.08 0.01 0.06 0.01 0.07 0.03 -0.05 -0.06 0.07

(5.34) (0.03) (0.07) (0.03) (0.05) (0.06) (0.05) (0.06) (0.05)
reversal 5 17.01 0.03

(5.77)
reversal 5 15.19 0.10 -0.06 0.06 -0.04 0.06 -0.10 -0.02 -0.21 0.10

(6.10) (0.05) (0.08) (0.05) (0.06) (0.08) (0.08) (0.10) (0.09)
spread 1 8.93 0.03

(3.37)
spread 1 9.01 0.06 -0.01 0.07 0.02 0.01 0.03 0.01 -0.01 0.10

(3.42) (0.02) (0.05) (0.02) (0.04) (0.04) (0.04) (0.04) (0.04)
spread 2 9.96 0.03

(3.78)
spread 2 9.04 0.07 -0.01 0.07 0.01 0.05 0.06 0.00 -0.03 0.09

(3.97) (0.03) (0.06) (0.03) (0.04) (0.05) (0.05) (0.05) (0.06)
spread 3 11.49 0.03

(3.89)
spread 3 9.68 0.07 -0.03 0.07 0.00 0.06 0.05 0.01 -0.06 0.10

(4.08) (0.03) (0.06) (0.03) (0.04) (0.05) (0.05) (0.05) (0.06)
spread 4 10.42 0.03

(3.72)
spread 4 8.72 0.07 -0.02 0.06 0.02 0.06 0.05 -0.00 -0.05 0.08

(3.95) (0.03) (0.06) (0.03) (0.04) (0.05) (0.05) (0.05) (0.06)
spread 5 9.07 0.02

(4.12)
spread 5 7.52 0.08 -0.01 0.05 -0.00 0.07 0.05 0.00 -0.02 0.07

(4.12) (0.03) (0.06) (0.03) (0.04) (0.05) (0.05) (0.05) (0.05)
spread 6 9.34 0.02

(4.34)
spread 6 8.56 0.08 -0.01 0.04 0.04 0.08 0.05 0.01 -0.04 0.07

(4.34) (0.03) (0.06) (0.03) (0.05) (0.05) (0.05) (0.05) (0.05)
spread 7 9.28 0.02

(4.04)
spread 7 7.80 0.08 -0.03 0.02 0.02 0.09 0.03 0.03 -0.08 0.07

(4.11) (0.03) (0.06) (0.03) (0.04) (0.06) (0.05) (0.06) (0.05)
spread 8 9.19 0.02

(4.27)
spread 8 6.99 0.07 -0.03 0.01 0.02 0.12 0.04 0.01 -0.09 0.07

(4.38) (0.04) (0.06) (0.04) (0.05) (0.06) (0.06) (0.07) (0.06)
spread 9 9.05 0.01

(4.42)
spread 9 4.99 0.06 -0.09 -0.00 0.03 0.11 0.03 0.02 -0.11 0.06

(4.88) (0.04) (0.07) (0.04) (0.05) (0.07) (0.07) (0.08) (0.07)
spread 10 15.22 0.01

(5.02)
spread 10 3.26 0.04 -0.27 -0.05 -0.03 0.15 -0.11 -0.08 -0.29 0.09

(6.86) (0.08) (0.10) (0.08) (0.10) (0.13) (0.14) (0.14) (0.11)

Table A.19: Out-of-sample predictive Regression Table 3

Notes: The table reports estimates from OLS regressions of excess bond returns on the lagged variables. The dependent variable
rxt+1, is the excess monthly log return on the corporate bond portfolio. All factors are constructed with information in the t
information set only. In particular, the Cochrane-Piazessi factor, CP08, is recursively estimated in analogy to Cochrane and
Piazessi (2008). PC1-PC8 denote factors estimated recursively by principal components analysis using a panel of data with
132 individual series. Heteroskedasticity robust standard errors are reported in parentheses. Coefficients that are statistically
significant at the 5% or better level are highlighted in bold. All specifications include a constant. The full sample period spans
1977:02-2018:12

52



A.6 Description of fundamentals

Acronym Name Definition Reference

at Total Assets Total Assets (at) Gandhi and Lustig
(2015)

ato Net sales over
lagged

Net sales (sale) over lagged net operating assets. Net
operating assets are the difference between operating
assets and operating liabilities (defined in noa)

Soliman (2008)

beme Book to Mar-
ket Ratio

Book equity is shareholder equity (sh) plus deferred
taxes and investment tax credit (txditc), minus pre-
ferred stock (ps). ”sh” is shareholders’ equity (seq).
If missing, ”sh” is the sum of common equity (ceq)
and preferred stock (ps). If missing, ”sh” is the dif-
ference between total assets (at) and total liabilities
(lt). Depending on availability, we use the redemp-
tion (item pstkrv), liquidating (item pstkl), or par
value (item pstk) for ps. The market value of equity
(prc*shrout) is as of December t-1.

Fama and French
(1992)

b treasury Treasuries
Beta

Coefficient of the bond portfolio excess return from
the regression on the average excess returns (across
maturities) in the treasury market.

b creditspread Creditspread
Beta

Coefficient of the bond portfolio excess return from
the regression on the credit spread (BAA-Treasury).

c Ratio of
cash and
short-term
investments
to total assets

Ratio of cash and short-term investments (che) to to-
tal assets (at)

Palazzo (2012)

cf Free Cash
Flow to Book
Value

Cash flow to book value of equity is the ratio of net
income (ni), depreciation and amortization (DP), less
change in working capital (wcapch), and capital ex-
penditure (capx) over the book-value of equity (de-
fined in beme)

Hou et al. (2011)

cf2p Cash flow to
price

Cash flow over market capitalization (prc*shrout) as
of December t-1. Cashow is defined as income before
extraordinary items (ib) plus depreciation and amor-
tization (dp) plus deferred taxes (txdb).

Desai et al. (2004)

cto Capital
turnover

Ratio of net sales (sale) to lagged total assets (at) Haugen and Baker
(1996)

d2a Capital inten-
sity

Ratio of depreciation and amortization (dp) to total
assets (at)

Gorodnichenko and
Weber (2016)

d2p Dividend
Yield

Total dividends (divamt) paid from July of t-1 to June
of t per dollar of equity (LME) in June of t

Litzenberger and
Ramaswamy (1979)

dp12a Change in
property,
plants, and
equipment

Changes in property, plants, and equipment (ppegt)
and inventory (invt) over lagged total assets (at)

Lyandres et al.
(2008)

e2p Earnings to
price

The earnings used in June of year t are total earn-
ings before extraordinary items for the last fiscal year
end in t-1. P (actually ME) is price times shares out-
standing at the end of December of t-1.

Basu (1983)

Table A.20: Fundamentals - Description
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Acronym Name Definition Reference

fc2y Fixed costs to
sales

Ratio of selling, general, and administrative expenses
(xsgs), research and development expenses (xrd), and
advertising expenses (xad) to net sales (sale)

D’Acunto et al.
(2018)

investment Investment Change in total assets (at) from the fiscal year ending
in year t-2 to the fiscal year ending in t-1, divided by
t-2 total assets

Cooper et al. (2008)

lme Size Total market capitalization at the end of the previous
month defined as price times shares outstanding

Fama and French
(1992)

lt rev Long-term re-
versal

Cumulative return from 60 months before the return
prediction to 13 months before

Jegadeesh and Tit-
man (1993)

lev Leverage Ratio of long-term debt (dltt) and debt in current
liabilities (dlc) to the sum of long-term debt, debt in
current liabilities, and stockholders’ equity (seq)

Lewellen (2015)

lturnover Turnover Turnover is last month’s volume (vol) over shares out-
standing (shrout)

Datar et al. (1998)

ni Net Share Is-
sues

The change in the natural log of split-adjusted shares
outstanding (csho*ajex) from the fiscal yearend in t-2
to the fiscal yearend in t-1

Pontiff and
Woodgate (2008)

noa Net operating
assets

Difference between operating assets minus operating
liabilities scaled by lagged total assets (at). Operat-
ing assets are total assets (at) minus cash and short-
term investments (che), minus investment and other
advances (ivao). Operating liabilities are total as-
sets (at), minus debt in current liabilities (dlc), minus
long-term debt (dltt), minus minority interest (mib),
minus preferred stock (pstk), minus common equity
(ceq).

Hirshleifer et al.
(2004)

oa Operating ac-
cruals

Changes in non-cash working capital minus deprecia-
tion (dp) scaled by lagged total assets (at). Non-cash
working capital is defined in Accrual (ac)

Sloan (1996)

ol Operating
leverage

Sum of cost of goods sold (cogs) and selling, general,
and administrative expenses (xsga) over total assets
(at)

Novy-Marx (2011)

op Operating
profitability

Annual revenues (revt) minus cost of goods sold
(cogs), interest expense (tie), and selling, general, and
administrative expenses (xsga) divided by book eq-
uity (defined in beme)

Fama and French
(2015b)

pcm Price to cost
margin

Difference between net sales (sale) and costs of goods
sold (cogs) divided by net sales (sale)

Bustamante and
Donangelo (2017)

Table A.21: Fundamentals - Description cont’d
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Acronym Name Definition Reference

pm Profit margin Operating income after depreciation (oiadp) over net
sales (sale)

Soliman (2008)

prof Profitability Gross profitability (gp) divided by the book value of
equity (defined in beme)

Ball et al. (2015)

q Tobin’s Q Tobin’s Q is total assets (at), the market value of eq-
uity (prc*shrout) minus cash and short-term invest-
ments (che), minus deferred taxes (txdb) scaled by
total assets (at)

Kaldor (1966)

rna Return on net
operating as-
sets

Ratio of operating income after depreciation (oiadp)
to lagged net operating assets.

Soliman (2008)

roa Return on as-
sets

Income before extraordinary items (ib) to lagged total
assets (at)

Balakrishnan et al.
(2010)

roe Return on eq-
uity

Income before extraordinary items (ib) to lagged
book-value of equity

Haugen and Baker
(1996)

rel2high Closeness to
past year high

The ratio of stock price at the end of the previous
calendar month and the highest daily price in the past
year

George and Hwang
(2004)

s2p Sales to price Ratio of net sales (sale) to the market capitalization
(lme)

Lewellen (2015)

sga2s Selling, gen-
eral and
administra-
tive expenses
to sales

Ratio of selling, general and administrative expenses
(xsga) to net sales (sale)

Freyberger et al.
(2020a)

spread Bid-ask
spread

The average daily bid-ask spread in the previous
month

Chung and Zhang
(2014)

variance40 Variance Variance of daily returns in the past 40 trading days Ang et al. (2006)
capm b mkt Market Beta Coefficient of the market excess return from the re-

gression on excess returns. The estimation window
is 252 trading days, and the minimum window is 126
trading days

Fama and MacBeth
(1973)

ff3 ivol Idiosyncratic
volatility

Standard deviation of the residuals from a regression
of excess returns on the Fama and French three-factor
model. The estimation window is 252 trading days,
and the minimum window is 126 trading days

Ang et al. (2006)

r12 2 Momentum Cumulative return from 12 months before the return
prediction to two months before

Fama et al. (1996)

r12 7 Intermediate
momentum

Cumulative return from 12 months before the return
prediction to seven months before

Novy-Marx (2012)

r2 1 Short-term
momentum

Lagged one-month return Jegadeesh and Tit-
man (1993)

r36 13 Long-term
momentum

Cumulative return from 36 months before the return
prediction to 13 months before

De Bondt and
Thaler (1985)

Table A.22: Fundamentals - Description cont’d
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Acronym Name Definition Reference

dp tr gw Dividend-
price ratio

We use the monthly CRSP market return index from
December 1971 to December 2020 and the risk-free
rate from Kenneth French website. The aggregate
dividend is obtained from the difference between cum
(vwretd) and ex dividend (vwretx) returns. Then we
take a rolling sum of 12 months, and construct the dp
variable as log of the rolling sum minus log of the to-
talreturn cum dividend. Stationarity transformation
in the end: first differences

Koijen and
Van Nieuwer-
burgh (2011)

bm tr gw Book-to-
Market Ratio

From December 1971 to December 2019 we use the
bm variable from Welch and Goyal (2008). Note
that these are based on the Dow Jones Industrial
Average. For the remaining months of 2020, we use
the price/book ratio from the last-day-of month from
Bloomberg (we also invert it to get a book/price
value). Stationarity transformation in the end: first
differences of logs.

Welch and Goyal
(2008)

ntis tr gw Net Equity
Expansion

We use all of CRSP. We use formula (3) in Welch
and Goyal (2008). We take the TOTVAL variable
(monthly) from CRSP as market cap variable, and
we used VWRETX to construct net issuance. Then
take 12-month moving sum, and divide by end-of-year
market cap. Stationarity transformation in the end:
first differences

Welch and Goyal
(2008)

tms tr gw Term spread The term spread is the difference between long-term
yield on govt bonds (lty) and the treasury bill (tbl);
we use GS10 in FRED for lty, so that we calculate tms
from FRED as GS10-TB3MS. Stationarity transfor-
mation in the end: no transformation

Welch and Goyal
(2008)

dfy tr gw Default
spread

The difference between BAA and AAA-rated corpo-
rate bond yields; corporate bond yields both for BAA
and AAA are from FRED. Stationarity transforma-
tion in the end: first differences

Welch and Goyal
(2008)

svar tr gw Stock variance We construct the monthly variance as the sum of
squared returns within a month of the market return
from CRSP. Stationarity transformation in the end:
difference of logs

Welch and Goyal
(2008)

a2me Assets to mar-
ket cap

Total assets (at) over market capitalization
(prc*shrout) as of December t-1

Bhandari (1988)

ac Accrual Change in operating working capital per split-
adjusted share from the fiscal year end t-2 to t-1
divided by book equity (defined in beme) per share
in t-1. Operating working capital per split-adjusted
share is defined as current assets (act) minus cash and
short-term investments (che) minus current liabilities
(lct) minus debt in current liabilities (dlc) minus in-
come taxes payable (txp).

Sloan (1996)

Table A.23: Fundamentals - Description cont’d
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A.6.1 Description of the macro variables

Acronym Definition tcode

RPI Real Personal Income 5
W875RX1 Real personal income ex transfer receipts 5
INDPRO IP Index 5
IPFPNSS IP: Final Products and Nonindustrial Supplies 5
IPFINAL IP: Final Products (Market Group) 5
IPCONGD IP: Consumer Goods 5
IPDCONGD IP: Durable Consumer Goods 5
IPNCONGD IP: Nondurable Consumer Goods 5
IPBUSEQ IP: Business Equipment 5
IPMAT IP: Materials 5
IPDMAT IP: Durable Materials 5
IPNMAT IP: Nondurable Materials 5
IPMANSICS IP: Manufacturing (SIC) 5
IPB51222S IP: Residential Utilities 5
IPFUELS IP: Fuels 5
CUMFNS Capacity Utilization: Manufacturing 2
HWI Help-Wanted Index for United States 2
HWIURATIO Ratio of Help Wanted/No. Unemployed 2
CLF16OV Civilian Labor Force 5
CE16OV Civilian Employment 5
UNRATE Civilian Unemployment Rate 2
UEMPMEAN Average Duration of Unemployment (Weeks) 2
UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 5
UEMP5TO14 Civilians Unemployed for 5-14 Weeks 5
UEMP15OV Civilians Unemployed - 15 Weeks & Over 5
UEMP15T26 Civilians Unemployed for 15-26 Weeks 5
UEMP27OV Civilians Unemployed for 27 Weeks and Over 5
CLAIMSx Initial Claims 5
PAYEMS All Employees: Total nonfarm 5
USGOOD All Employees: Goods-Producing Industries 5
CES1021000001 All Employees: Mining and Logging: Mining 5
USCONS All Employees: Construction 5
MANEMP All Employees: Manufacturing 5
DMANEMP All Employees: Durable goods 5
NDMANEMP All Employees: Nondurable goods 5
SRVPRD All Employees: Service-Providing Industries 5
USTPU All Employees: Trade, Transportation & Utilities 5
USWTRADE All Employees: Wholesale Trade 5
USTRADE All Employees: Retail Trade 5
USFIRE All Employees: Financial Activities 5
USGOVT All Employees: Government 5
CES0600000007 Avg Weekly Hours : Goods-Producing 1
AWOTMAN Avg Weekly Overtime Hours : Manufacturing 2
AWHMAN Avg Weekly Hours : Manufacturing 1
CES0600000008 Avg Hourly Earnings : Goods-Producing 6
CES2000000008 Avg Hourly Earnings : Construction 6
CES3000000008 Avg Hourly Earnings : Manufacturing 6
HOUST Housing Starts: Total New Privately Owned 4
HOUSTNE Housing Starts, Northeast 4

Table A.24: Macro Variables - Description

Notes: The table tabulates the variable acronym of the macro time-series, the description, as well as, the transformation code
(”tcode”). The transformation code denotes the variable transformation to make the series covariance stationary, (McCracken
and Ng, 2016). The tcode corresponds to: (1) no transformation; (2) ∆xt; (3) ∆2xt; (4) log(xt); (5) ∆log(xt); (6) ∆2log(xt);
(7) ∆(xt/xt−1 − 1.0).
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Acronym Definition tcode

HOUSTMW Housing Starts, Midwest 4
HOUSTS Housing Starts, South 4
HOUSTW Housing Starts, West 4
PERMIT New Private Housing Permits (SAAR) 4
PERMITNE New Private Housing Permits, Northeast (SAAR) 4
PERMITMW New Private Housing Permits, Midwest (SAAR) 4
PERMITS New Private Housing Permits, South (SAAR) 4
PERMITW New Private Housing Permits, West (SAAR) 4
DPCERA3M086SBEA Real personal consumption expenditures 5
CMRMTSPLx Real Manu. and Trade Industries Sales 5
RETAILx Retail and Food Services Sales 5
AMDMNOx New Orders for Durable Goods 5
ANDENOx New Orders for Nondefense Capital Goods 5
AMDMUOx Unfilled Orders for Durable Goods 5
BUSINVx Total Business Inventories 5
ISRATIOx Total Business: Inventories to Sales Ratio 2
M1SL M1 Money Stock 6
M2SL M2 Money Stock 6
M2REAL Real M2 Money Stock 5
BOGMBASE Monetary Base 6
TOTRESNS Total Reserves of Depository Institutions 6
NONBORRES Reserves Of Depository Institutions 7
BUSLOANS Commercial and Industrial Loans 6
REALLN Real Estate Loans at All Commercial Banks 6
NONREVSL Total Nonrevolving Credit 6
CONSPI Nonrevolving consumer credit to Personal Income 2
MZMSL MZM Money Stock 6
DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 6
DTCTHFNM Total Consumer Loans and Leases Outstanding 6
INVEST Securities in Bank Credit at All Commercial Banks 6
FEDFUNDS Effective Federal Funds Rate 2
CP3Mx 3-Month AA Financial Commercial Paper Rate 2
TB3MS 3-Month Treasury Bill: 2
TB6MS 6-Month Treasury Bill: 2
GS1 1-Year Treasury Rate 2
GS5 5-Year Treasury Rate 2
GS10 10-Year Treasury Rate 2
AAA Moody’s Seasoned Aaa Corporate Bond Yield 2
BAA Moody’s Seasoned Baa Corporate Bond Yield 2
COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS 1
TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 1
TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 1
T1YFFM 1-Year Treasury C Minus FEDFUNDS 1
T5YFFM 5-Year Treasury C Minus FEDFUNDS 1
T10YFFM 10-Year Treasury C Minus FEDFUNDS 1
AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 1
BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 1
TWEXAFEGSMTHx Trade Weighted U.S. Dollar Index 5

Table A.25: Macro Variables - Description cont’d

Notes: The table tabulates the variable acronym of the macro time-series, the description, as well as, the transformation code
(”tcode”).The transformation code denotes the variable transformation to make the series covariance stationary, (McCracken
and Ng, 2016). The tcode corresponds to: (1) no transformation; (2) ∆xt; (3) ∆2xt; (4) log(xt); (5) ∆log(xt); (6) ∆2log(xt);
(7) ∆(xt/xt−1 − 1.0).
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Acronym Definition tcode

EXSZUSx Switzerland / U.S. Foreign Exchange Rate 5
EXJPUSx Japan / U.S. Foreign Exchange Rate 5
EXUSUKx U.S. / U.K. Foreign Exchange Rate 5
EXCAUSx Canada / U.S. Foreign Exchange Rate 5
WPSFD49207 PPI: Finished Goods 6
WPSFD49502 PPI: Finished Consumer Goods 6
WPSID61 PPI: Intermediate Materials 6
WPSID62 PPI: Crude Materials 6
OILPRICEx Crude Oil, spliced WTI and Cushing 6
PPICMM PPI: Metals and metal products: 6
CPIAUCSL CPI : All Items 6
CPIAPPSL CPI : Apparel 6
CPITRNSL CPI : Transportation 6
CPIMEDSL CPI : Medical Care 6
CUSR0000SAC CPI : Commodities 6
CUSR0000SAD CPI : Durables 6
CUSR0000SAS CPI : Services 6
CPIULFSL CPI : All Items Less Food 6
CUSR0000SA0L2 CPI : All items less shelter 6
CUSR0000SA0L5 CPI : All items less medical care 6
PCEPI Personal Cons. Expend.: Chain Index 6
DDURRG3M086SBEA Personal Cons. Exp: Durable goods 6
DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods 6
DSERRG3M086SBEA Personal Cons. Exp: Services 6
S&P 500 S&P’s Common Stock Price Index: Composite 5
S&P: indust S&P’s Common Stock Price Index: Industrials 5
S&P div yield S&P’s Composite Common Stock: Dividend Yield 2
S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio 5
VXOCLSx VXO 1

Table A.26: Macro Variables - Description cont’d

Notes: The table tabulates the variable acronym of the macro time-series, the description, as well as, the transformation code
(”tcode”).The transformation code denotes the variable transformation to make the series covariance stationary, (McCracken
and Ng, 2016). The tcode corresponds to: (1) no transformation; (2) ∆xt; (3) ∆2xt; (4) log(xt); (5) ∆log(xt); (6) ∆2log(xt);
(7) ∆(xt/xt−1 − 1.0).
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A.7 Results for monthly return prediction using XGBoost

A typical application of xgboost on the whole feature set, including all macro features, and with GPU

acceleration for xgboost, shows there is little predictability in monthly excess return data.

XGBoost bond portfolios indiv. bonds

Best val. OOS-R2 0.04 -0.01
Test OOS 0.003 -0.006

Start date testing 01/2004 01/2006
most important feature med s2p med lme
2nd important feature med r2 med op
3rd important feature avg ereturn treasury GS1

Table A.27: Prediction via XGBoost - Results
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