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Abstract

Recent studies document strong performance for machine-learning-based investment strategies.

These strategies use anomaly variables discovered ex-post as predictors of stock returns and cannot be

implemented in real time. We construct real-time machine learning strategies based on a “universe” of

fundamental signals. While positive and significant, the out-of-sample performance of these strategies

is significantly weaker than those documented by prior studies. We find qualitatively similar results

when examining a “universe” of past-return-based signals. Our results offer a more tempered view of

the economic gains associated with machine learning strategies relative to prior literature.
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1 Introduction

Machine learning methods have received considerable attention in the recent asset pricing literature,

particularly in the area of return prediction (see, e.g., Chen, Pelger, and Zhu (2022), Freyberger,

Neuhierl, and Weber (2020), Gu, Kelly, and Xiu (2020) and Leippold, Wang, and Zhou (2022)). The

general conclusions of the existing studies are remarkably similar—machine learning models are supe-

rior to traditional models in predicting the cross-section of stock returns. Given the inherent focus of

machine learning methods on out-of-sample prediction, these studies leave readers with the impression

that machine learning methods routinely lead to large improvements in investment performance. In-

deed, a common theme among many existing studies is constructing long-short investment strategies

based on machine learning forecasts and demonstrating that these strategies are highly profitable.

While prior studies have clearly established the potential for large economic gains to investors using

machine learning forecasts, an important issue that has yet to be fully addressed in the literature is the

real-time implementability of machine learning strategies. Specifically, existing studies use published

anomaly variables as predictors of stock returns and implicitly assume that they are known to investors

at the beginning of the training period, even though most anomalies are discovered years or decades

later.1 While this approach is very natural if the objective is to measure risk premium or estimate the

stochastic discount factor, in which case we can take an econometrician’s perspective and analyze data

ex-post, such an approach raises the issue of whether the resulting machine learning strategies could

have been implemented by real-time investors. Take the asset growth anomaly of Cooper, Gulen, and

Schill (2008) as an example. It is unlikely that investors would have been able to single out asset growth

as a stock return predictor before that research was published in the mid-2000s. Assuming otherwise

would lead to a look-ahead bias. Moreover, published anomalies tend to exhibit strong in-sample

performance partly because of the publication bias (Harvey, Liu, and Zhu, 2016). Having hindsight of

this strong performance can lead to an overly optimistic assessment of past trading decisions; hence,

the economic gains from using machine learning forecasts documented by prior studies are potentially

overstated for real-time investors.

In this paper, we examine machine learning strategies based on a “universe” of over 18,000 funda-

mental signals. Because these signals are constructed from financial statement variables using permu-
1There are exceptions. For example, Kozak, Nagel, and Santosh (2020) use shrinkage and selection method to

construct a stochastic discount factor (SDF) from a comprehensive set of 70 financial ratios compiled by WRDS.
Avramov, Kaplanski, and Subrahmanyam (2022) use machine learning methods to construct a fundamental index from
105 signals that are based on deviations of accounting variables from their recent averages.
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tational arguments (Yan and Zheng, 2017), our strategies are implementable in real-time. Moreover,

examining a universe of fundamental signals, rather than selecting a subset of them based on whether

they have been published in academic journals, allows us to side-step the issue of data mining and

look-ahead bias. As a consequence, our strategies should more accurately reflect the economic benefit

of using machine learning forecasts for real-time investors.

We focus on fundamental signals for several reasons. First, fundamental analysis dates back at

least to Graham and Dodd (1934), so it is natural to expect investors to consider fundamental signals

as a potential class of return predictors (i.e., no look-ahead bias). Second, financial economists have

long emphasized the importance of economic intuition behind predictors of expected returns (Fama

and French, 1996; Cochrane, 2011), especially in a machine learning environment (Arnott, Harvey,

and Markowitz, 2019). Fundamental signals are inherently related to firm cash flows and valuations

and, therefore, have stronger economic foundations than most other classes of predictors. Third, one

can construct a “universe” of fundamental signals using permutational arguments (Yan and Zheng,

2017). This is important because real-time investors have no way of knowing which signals turn out

to be significant ex-post, so they have to learn from the universe of available signals.

The primary machine learning method we use is Boosted Regression Trees (BRT). We focus on BRT

for several reasons. First, previous studies have shown that BRT exhibit strong predictive performance

in finance applications. Gu, Kelly, and Xiu (2020), for example, show that BRT and neural networks

are the two best-performing machine learning methods in predicting stock returns. Second, BRT are

ideally suited for handling large, high-dimensional data sets because of their computational efficiency.

This is important for us because our predictor set, which contains more than 18,000 signals, is much

larger than those examined by previous studies. Third, BRT are robust to missing values, outliers,

and the addition of irrelevant input variables. Finally, BRT are not “black boxes” like many other

machine learning methods, and they are instead known for their interpretability.

We follow Gu, Kelly, and Xiu (2020) and partition our sample period 1963-2019 into a training

period, a cross-validation period, and an out-of-sample test period. We form long-short portfolios

based on machine learning predicted returns, i.e., buying stocks with high predicted returns and

shorting stocks with low predicted returns. We find that the equal-weighted long-short portfolio

generates an average return of 0.95% per month (t-statistic=6.63) and an annualized Sharpe ratio

of 1.02 during the out-of-sample period 1987-2019. The performance of the value-weighted long-

short portfolio is much weaker, earning an average return of 0.40% per month (t-statistic=2.34) and
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exhibiting a Sharpe ratio of 0.30.

The long-short returns and Sharpe ratios for our machine learning strategies, although statistically

significant, are considerably lower than those documented by prior studies. Gu, Kelly, and Xiu (2020),

for example, show that the long-short portfolios formed based on neural network forecasts earn an

average return of 3.27% per month and an annualized Sharpe ratio of 2.45 in equal-weighted portfolios

and an average return of 2.12% per month, and a Sharpe ratio of 1.35 in value-weighted portfolios.

Similarly, Chen, Pelger, and Zhu (2022) and Freyberger, Neuhierl, and Weber (2020) report that the

hedge portfolios constructed based on their models deliver an out-of-sample Sharpe ratio of 2.6 and

2.75, respectively. Thus, compared to the previous literature, our results indicate that the economic

gains to real-time investors from using machine learning forecasts are much more modest.

Institutional investors are more likely to have the resources and sophistication to use machine

learning methods. Previous studies (e.g., Gompers and Metrick (2001)) have shown that institutional

investors prefer large, liquid stocks because they are more investable. To evaluate whether our machine

learning strategies are profitable among large stocks, we repeat our analysis for subsamples of stocks

sorted by firm size. We find that the out-of-sample performance of our machine learning strategies

is statistically significant among small stocks but only marginally significant and, in some cases,

insignificant among large stocks. The weak evidence of out-of-sample predictability among large stocks

suggests that the economic benefit of using machine learning forecasts may be even more limited for

institutional investors.

The relatively weak performance of our machine-learning strategies is not specific to BRT. We find

even weaker evidence of out-of-sample predictability using neural network (NN) forecasts. Specifically,

while the long-short returns are generally significant in equal-weighted portfolios, they are insignificant

in value-weighted portfolios. Consistent with Gu, Kelly, and Xiu (2020), we find that shallow learning

performs better than deep learning in neural networks.

Our analyses so far have focused on fundamental signals. The main reason for this focus is that we

can construct a “universe” of fundamental signals (Yan and Zheng, 2017). Past return-based signals

are another class of predictors for which we can construct an “exhaustive” list of signals. In particular,

we follow Martin and Nagel (2022) and use the past 120 months (excluding the most recent month)

of stock returns. As in our analysis of fundamental signals, we continue to use BRT as the primary

machine-learning method. We find that the machine-learning strategy based on past-return signals

earns an average return of 1.38% per month (t-statistic=4.93) and exhibits an annualized Sharpe
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ratio of 1.04 in equal-weighted portfolios. The performance of value-weighted portfolios is weaker; the

average long-short return is 0.78% per month (t-statistic=2.41), while the Sharpe ratio is 0.46. The

results based on neural network forecasts are qualitatively similar, with shallow networks performing

similarly to BRT and deep networks performing significantly worse than BRT. Risk-adjusted returns

indicate that the performance is significantly reduced when we control for the momentum factor.

Overall, our analyses based on past-return signals paint a similar picture to that based on fundamental

signals. That is, the performance of our machine learning strategies based on past-return signals is

positive and significant but economically and statistically weaker than those reported by the prior

literature.

One might be concerned that the relatively weak performance of our machine learning strategies

is perhaps because our ML implementation is not as powerful as those employed by previous studies.

To mitigate this concern, we replicate our machine learning analyses—both Boosted Regression Trees

(BRT) and Neural Networks (NN)—on samples of published anomalies. We use both the Chen and

Zimmermann (2022, CZ) covariates as well as the set of anomalies included in Green, Hand, and

Zhang (2017, GHZ) and used by Gu, Kelly, and Xiu (2020). For the GHZ sample, we find that both

BRT and shallow NNs deliver an out-of-sample long-short return in excess of 3.5% per month for

equally weighted portfolios and a Sharpe Ratio between 2.35 and 2.95. These numbers are in line

with the results in Gu, Kelly, and Xiu (2020) and substantially stronger than what we document for

our “unmined” universe of predictors. The results that use the CZ sample of anomalies are even more

impressive. For example, BRTs generate an equal-weighted long-short return of 5.18% per month and

a Sharpe Ratio of 3.68. Taken together, these results indicate that our ML implementation is capable

of generating rather strong performance when we use published predictors. As stated earlier, machine

learning strategies based on subsequently discovered anomalies cannot be implemented in real time,

and their performance is likely inflated due to a look-ahead bias. Nevertheless, the fact that we are

able to replicate the strong performance of previous studies when we use published predictors indicates

that our ML implementation is not the reason why the performance of our real-time implementable

ML strategies is relatively weak.

Another potential explanation for the performance difference between our machine learning strate-

gies and those employed by existing studies is the omission of short-term reversal from our predictor

set. We perform two tests to evaluate this possibility. First, we remove short-term reversal from sam-

ples of published factors and construct machine learning strategies based on the remaining published

4



factors. We again consider the samples of published anomalies from Green, Hand, and Zhang (2017)

and Chen and Zimmermann (2022). We find that excluding short-term reversal reduces the machine

learning strategy performance. However, the strong performance of the machine learning portfolios

remains intact even after excluding short-term reversal from the samples of published factors. For ex-

ample, excluding short-term reversal from the GHZ anomalies reduces the equal-weighted long-short

return for the BRT strategy from 3.57% (t-stat=8.91) to 3.04% (t-stat=9.11). The corresponding

numbers for the CZ anomalies are 5.18% (t-stat=9.91) and 4.87% (t-stat=10.05). The magnitude of

the performance reduction is modest, and the long-short returns of these machine learning strategies,

even after excluding short-term reversals, remain considerably higher than those based on our universe

of fundamental signals.

In the second test, we add short-term reversal to our set of past-return signals and repeat our

analysis. The results reveal a modest increase in the machine learning performance after short-

reversal is added to the predictor set. For example, the equal-weighted long-short return for the BRT

strategy is 1.38% (t-stat=4.93) without short-term reversal and is 1.81% (t-stat=6.40) with short-term

reversal. The value-weighted long-short returns increase from 0.78% (t-stat=2.41) without short-term

reversal to 0.98% (t-stat=3.14) with short-term reversal. Overall, we find that the long-short returns

are modestly increased after including short-term reversal; however, they remain significantly lower

than those for the machine learning strategies based on the GHZ and CZ samples of published factors.

These results suggest that short-term reversal alone cannot explain the performance difference between

our ML strategies and those based on published factors.

We focus on the gross, i.e., the before-trading cost performance of our machine learning strategies

in this paper to facilitate comparison with prior literature (e.g., Gu, Kelly, and Xiu (2020); Freyberger,

Neuhierl, and Weber (2020); Chen, Pelger, and Zhu (2022)). There is, however, growing attention

to trading costs in both the anomaly literature and the machine learning literature (e.g., Novy-Marx

and Velikov (2016); Chen and Velikov (2022); Jensen, Kelly, Malamud, and Pedersen (2022)). Next,

we examine the after-trading-cost performance of our machine-learning strategies. We use Chen and

Velikov (2022)’s low-frequency effective spreads as our trading cost measure and follow their approach

to calculate the net returns of long-short strategies. We find that the net returns to our BRT strategies

based on fundamental signals are positive: 0.73% per month for equal-weighted portfolios and 0.25%

for value-weighted portfolios. In contrast, the net returns to strategies based on past-return signals

are consistently negative. For example, the net return for BRT strategies is -0.97% per month for
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equal-weighted portfolios and -0.29% for value-weighted portfolios. Adding short-term reversal to the

predictor set improves the gross returns, but the net returns remain negative.

We perform a number of robustness tests and additional analyses. We repeat our analysis using a

rolling-window approach instead of a recursive one. If the relations between fundamental signals and

future stock returns are unstable over time, then the rolling-window approach should perform better.

Contrary to this argument, we find that our machine-learning strategies perform slightly worse under

the rolling-window approach than under the recursive-window approach.

One might argue that the modest performance of our machine-learning strategies is due to our

large universe of fundamental signals. In particular, if most of these signals are uninformative about

future stock returns, machine-learning strategies based on our universe could be sub-optimal. As

noted earlier, BRTs are robust to the addition of irrelevant predictor variables, so this is not a big

concern for us. Nevertheless, to examine whether the performance of our machine learning strategies

is hampered by the large size of our predictor set, we construct various subsets of our universe based

on the prominence of the underlying accounting variables. Overall, we find no evidence that machine

learning strategies based on smaller universes of fundamental signals perform significantly better.

We also compare the in-sample and out-of-sample performance of our machine-learning strategies.

This analysis is motivated by Martin and Nagel (2022), who demonstrate that, in the age of Big

Data, when investors face a high-dimensional prediction problem, there should be a substantial wedge

between in-sample and out-of-sample predictability. Our results are consistent with this prediction.

We find that, in contrast to the modest out-of-sample predictability, our fundamental signals exhibit

strong in-sample predictability.

Our paper builds on and contributes to the recent literature employing machine learning meth-

ods in empirical asset pricing. Gu, Kelly, and Xiu (2020) use machine learning methods to measure

risk premium and show that machine learning models, particularly trees and neural networks, sig-

nificantly outperform linear regression models in predicting stock returns. Chen, Pelger, and Zhu

(2022) estimate the SDF using deep neural networks and show that their model outperforms all other

benchmark models. Freyberger, Neuhierl, and Weber (2020) use the adaptive group LASSO for model

selection and show that their model exhibits superior out-of-sample performance. Kozak, Nagel, and

Santosh (2020) use shrinkage and selection methods to construct an SDF that summarizes the joint

explanatory power of a large cross-section of return predictors.2 These studies have established the
2For additional studies that use machine learning methods in asset pricing, please also see, e.g., Rapach, Strauss, and

Zhou (2013), Chinco, Clark-Joseph, and Ye (2019), Feng, Polson, and Xu (2020), Bryzgalova, Pelger, and Zhu (2020),

6



potential for large economic gains to investors using machine learning strategies. We complement the

existing studies by taking the perspective of real-time investors. Specifically, we construct real-time-

implementable machine learning strategies and show that they are significantly less profitable than

those considered by prior literature.

Our paper is closely related to Avramov, Kaplanski, and Subrahmanyam (2022), who use machine

learning methods to construct a fundamental index from 105 signals based on deviations of accounting

variables from their recent averages. They show that this fundamental deviation index significantly

predicts future stock returns. Our paper is also related to several earlier studies (Ou and Penman,

1989; Holthausen and Larcker, 1992; Haugen and Baker, 1996) that use machine leaning-like methods

to predict future stock returns. Ou and Penman (1989) use a comprehensive set of accounting ratios

to predict future unexpected earnings and then form trading strategies based on the predicted sign of

future unexpected earnings. Holthausen and Larcker (1992) use the accounting ratios from Ou and

Penman to directly predict future stock returns. Haugen and Baker (1996) examine the predictive

ability of a comprehensive set of cross-sectional return predictors in the U.S. and globally.

Our paper is also related to Avramov, Cheng, and Metzker (2023), who show that much of the prof-

itability of machine learning-based investment strategies is derived from difficult-to-arbitrage stocks or

during periods when limits-to-arbitrage are elevated. Our finding that the out-of-sample predictability

is significantly weaker among large stocks is consistent with Avramov, Cheng, and Metzker (2023).

Limits-to-arbitrage, however, is not our primary focus. Our main argument is that machine learning

strategies that use subsequently discovered anomaly variables as predictors, including those considered

by Avramov, Cheng, and Metzker (2023), may not be implementable in real-time.

Finally, our paper is related to Arnott, Harvey, and Markowitz (2019) and Israel, Kelly, and

Moskowitz (2020), who caution that machine learning methods may not work as well in finance as in

some other disciplines. In particular, machine learning methods face three significant challenges in

finance applications: the lack of data (on the time series dimension), the low signal-to-noise ratio, and

the adaptive nature of financial markets. The modest performance of our real-time machine learning

strategies could be a manifestation of these challenges faced by market professionals and investors.

The rest of our paper proceeds as follows. Section 2 describes our data, sample, and methods.

Section 3 presents our main empirical results. Section 4 presents the results for additional analyses
Bianchi, Büchner, and Tamoni (2021), Dong, Li, Rapach, and Zhou (2022), Leippold, Wang, and Zhou (2022), Kelly
and Xiu (2023), Geertsema and Lu (2023), Kaniel, Lin, Pelger, and Van Nieuwerburgh (2023) and Bali, Beckmeyer,
Mörke, and Weigert (2023).
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and robustness tests. Section 5 concludes.

2 Data, Sample, and Methods

This section describes the stock sample and associated fundamental signals we employ in our main

analysis. We then describe the cross-sectional prediction problem underlying the portfolio strategies

we generate and the main empirical method we use—Boosted Regression Trees (BRT). Third, we

describe how we implement our machine learning strategy. Finally, we provide a discussion of the

distinction between look-ahead bias and data-mining bias.

2.1 Stock Sample and Associated Fundamental Signals

We obtain monthly stock returns, share price, SIC code, and shares outstanding from the Center

for Research in Security Prices (CRSP) and annual accounting data from Compustat. Our sample

consists of the NYSE, AMEX, and NASDAQ common stocks (with a CRSP share code of 10 or 11)

with the necessary data to construct fundamental signals and compute subsequent stock returns. We

exclude financial stocks, i.e., those with a one-digit SIC code of 6. We also remove stocks with a share

price lower than $1. To mitigate backfilling biases, we require that a firm be listed on Compustat for

two years before it is included in our sample (Fama and French, 1993). We obtain Fama and French

(1996, 2015) factors and the momentum factor from Kenneth French’s website and Hou, Xue, and

Zhang (2015) q-factors from Lu Zhang’s website.3 Our sample spans from July 1963 to June 2019,

and our sample consists of 15, 035 stocks.

We construct the universe of fundamental signals for our sample of stocks following Yan and

Zheng (2017).4 We start with 240 accounting variables (listed in Appendix B) and compute, for each

variable, a total of 76 signals (listed in Appendix C). These signals are obtained by taking the original

accounting variables and transforming them by computing changes, ratios, and other potentially

economically meaningful transformations. The final number of fundamental signals we include in our

analysis is 18, 113, which is slightly smaller than 18, 240 (240 × 76) because not all combinations of

the accounting variables result in meaningful signals, and some of the combinations are redundant.
3Kenneth French’s data library is located at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html. The q-factors can be downloaded from http://global-q.org/index.html.
4To minimize our discretion, we use a pre-existing universe of fundamental signals instead of constructing one

specifically for this study. Chordia, Goyal, and Saretto (2020) extend Yan and Zheng (2017) and construct a universe
of over 2 million fundamental signals. We choose not to use this universe because real-time investors are unlikely to
have the computing power to evaluate these many predictive variables in a machine learning context.
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For brevity, we refer the readers to Yan and Zheng (2017) for complete details regarding selecting

accounting variables and constructing fundamental signals.

2.2 Methodology

2.2.1 Prediction Equation. We predict the cross-section of stock returns using the following

specification:

Ri,t+1 = f (xi,t|θ) + εi,t+1 (1)

where Ri,t+1 denotes annual excess return for stock i from July of year t to June of year t + 1, xi,t

denotes a vector of variables used to predict the cross section of returns, and θ denotes the parameters

for the prediction function f . Stocks are indexed as i = 1, . . . , N and years are indexed by t = 1, . . . , T .

The vector of predictive variables includes the 18, 113 fundamental signals described earlier. To

make sure the accounting information is publicly available to investors, we follow Fama and French

(1992) and pair accounting variables in year t − 1 with stock returns from July of year t to June of

year t + 1. We follow Gu, Kelly, and Xiu (2020) and transform all fundamental signals as follows.

We first rank all non-missing fundamental signals each year and then scale their ranks to the interval

[−1,+1]. By construction, the cross-sectional median of the transformed fundamental signals is zero.

We predict annual excess returns for two reasons. First, our fundamental signals are constructed

from annual financial statements and are updated annually. Second, the number of signals consid-

ered in our study is substantially larger than those in prior studies. Predicting annual returns is

computationally more efficient than predicting monthly returns.5

2.2.2 Machine Learning Methods vs Linear Regressions. Traditionally, it was common in

the literature to assume linearity of the f function and estimate Equation (1) using linear regression

(LR) methods. More recently, the finance literature has instead started adopting more advanced

Machine Learning (ML) methods.

One may expect that ML methods should have an advantage compared to linear regression methods

because they feature 1) variable selection, 2) model combination, and 3) regularization/shrinkage,

which allow them to handle large sets of conditioning information and stabilize their predictions by

making them less sensitive to outliers.
5We conduct most of our empirical analyses on a high-performance cluster of 14 computing nodes, each of which is

equipped with 128GB of RAM.
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ML methods also allow to capture nonlinearities in the relations between the target variable and

the regressors. When viewed through the lenses of the bias-variance trade-off, including nonlinearities

allows for a smaller bias at the cost of a higher variance which positively relates to the instability of the

predictions. In fact, a growing field in computer science, referred to as “adversarial machine learning,”

shows that even very small perturbations of the predictor variables can result in large changes in ML

predictions.6

Similar effects could arise naturally in finance, where the data-generating process relating regres-

sands and regressors constantly evolves. As profitable strategies are arbitraged away by smart money

in a Shumpeterian creative destruction cycle, ML methods could potentially overfit certain temporary

patterns that exist only in certain periods. This is particularly true for ML models with thousands

(millions or even billions) of parameters that have been trained to capture deep, non-linear interac-

tions because such a process makes them less adaptable to changes in the underlying dynamics of

the data. These issues are further complicated by the fact that financial datasets are relatively small

compared to those used in other fields, and financial research often faces weak signal-to-noise ratios

(Kelly and Xiu, 2023). In these contexts, simpler models, like linear regression, could be more robust

to changes in the data-generating process and deliver a more robust performance out-of-sample.

An important question is whether we should expect the advantages and disadvantages of ML

models compared to LR models to vary depending on whether the researchers use “unmined” versus

“known” predictors in their analysis. The theoretical literature does not provide a definitive answer

to this question. Intuitively, on the one hand, we can expect ML methods to have a greater advantage

compared to LR methods in the “unmined” predictor setting than in the “known” predictor setting

because they feature regularization and variable selection. On the other hand, ML may have a smaller

advantage relative to LR among “unmined” predictors because nonlinearities and variable interactions

may be less important in higher-dimensional settings, and ML methods may be less robust to time

variations in the relation between regressand and regressors. We leave an in-depth analysis of these

theoretical and empirical issues to further research, and, in this work, we limit ourselves to highlighting

that, while the majority of the literature shows tremendous promise for ML methods in finance, some

of the results documented in the literature should be interpreted cautiously.
6see https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa for

an introduction to the topic and additional details.
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2.2.3 Boosted Regression Trees. Our baseline specification includes 18, 113 fundamental signals.

We choose the “off-the-shelf” machine learning tool called Boosted Regress Trees (BRT), in particular,

the LightGBM implementation (Ke, Meng, Finley, Wang, Chen, Ma, Ye, and Liu, 2017) for our

baseline analysis.

We choose BRT as our primary machine learning method for several reasons. First, BRT routinely

rank among the very best machine learning algorithms in both finance and non-finance applications.7

Second, BRT can handle large data sets with high dimensionality without overfitting because they

simultaneously perform subsampling, model combination, and shrinkage. Third, BRT are robust to

missing values and outliers (Hastie, Tibshirani, and Friedman, 2009). In particular, BRT are in-

variant under all monotone transformations of the individual input variables, making the forecasts

generated robust to extreme values. Fourth, BRT are robust to the addition of irrelevant input vari-

ables (Friedman, 2001; Hastie, Tibshirani, and Friedman, 2009), because the underlying Classification

and Regression Trees (CART) algorithm is designed to perform variable selection. Finally, because

BRT are rooted in the CART framework, they possess good interpretability. For example, BRT return

the rank and relative importance of all the potential regressors available, known as relative influence

measures.8 This feature distinguishes BRT from harder-to-interpret methods such as neural networks.

Regression Trees

A regression tree is built through a process known as binary recursive partitioning, which is

an iterative process that splits the data into partitions or branches. Suppose we have P potential

predictor (“state”) variables and a single dependent variable over T observations, i.e., (xt, yt+1) for

t = 1, 2, . . . , T , with xt = (xt1, xt2, ..., xtp). Fitting a regression tree requires deciding (i) which

predictor variables to use to split the sample space and (ii) which split points to use. The regression

trees we use employ recursive binary partitions, so the fit of a regression tree can be written as an

additive model:

f (x) =
J∑

j=1

cjI {x ∈ Sj} ,

where Sj , j = 1, . . . , J are the regions we split the space spanned by the predictor variables into, I{}

is an indicator variable, and cj is the constant used to model the dependent variable in each region.

If the L2 norm criterion function is adopted, the optimal constant is ĉj = mean (yt+1|xt ∈ Sj).
7See a list of Machine Learning Challenge Winning Solutions on the LightGBM’s website at https://github.com/

microsoft/LightGBM/tree/master/examples.
8To conserve space, we provide a description of the relative influence measures in Appendix D. We also implement

the relative influence measure on our data and report the results in Appendix D.
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The globally optimal splitting point is difficult to determine, particularly in cases where the number

of state variables is large. Hence, we use a sequential greedy algorithm. Using the full set of data, the

algorithm considers a splitting variable p and a split point s so as to construct half-planes,

S1 (p, s) = {X|Xp ≤ s} and S2 (p, s) = {X|Xp > s} ,

that minimize the sum of squared residuals:

min
p,s



min
c1

∑

xt∈S1(p,s)

(yt+1 − c1)
2 +min

c2

∑

xt∈S2(p,s)

(yt+1 − c2)
2



 .

For a given choice of p and s, the fitted values, ĉ1 and ĉ2, are

ĉ1 =
1

∑T
t=1 I {xt ∈ S1 (p, s)}

T∑

t=1

yt+1I {xt ∈ S1 (p, s)} ,

ĉ2 =
1

∑T
t=1 I {xt ∈ S2 (p, s)}

T∑

t=1

yt+1I {xt ∈ S2 (p, s)} .

The best splitting pair (p, s) in the first iteration can be determined by searching through each of

the predictor variables, p = 1, . . . , P . Given the best partition from the first step, the data is then

partitioned into two additional states, and the splitting process is repeated for each of the subsequent

partitions. Predictor variables that are never used to split the sample space do not influence the fit

of the model, so the choice of splitting variable effectively performs variable selection.

Regression trees are ideally suited for handling high-dimensional data sets, incorporating multi-

way interactions among predictors, and capturing non-linear relations between predictors and the

predicted variable. However, the approach is sequential, and successive splits are performed on fewer

and fewer observations, increasing the risk of fitting idiosyncratic data patterns. Furthermore, there

is no guarantee that the sequential splitting algorithm leads to the globally optimal solution. To deal

with these problems, we next consider a regularization method known as boosting.

Boosting

Boosting is based on the idea that combining a series of simple prediction models can lead to more

accurate forecasts than those available from any individual model. Boosting algorithms iteratively

re-weight data used in the initial fit by adding new trees in a way that increases the weight on
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observations modeled poorly by the existing collection of trees. From above, recall that a regression

tree can be written as:

T
(
x; {Sj , cj}Jj=1

)
=

J∑

j=1

cjI {x ∈ Sj} .

A boosted regression tree is simply the sum of regression trees:

fB (x) =
B∑

b=1

Tb
(
x; {Sb,j , cb,j}Jj=1

)
,

where Tb
(
x; {Sb,j , cb,j}Jj=1

)
is the regression tree used in the b-th boosting iteration and B is the

number of boosting iterations. Given the model fitted up to the (b−1)-th boosting iteration, fb−1(x),

the subsequent boosting iteration seeks to find parameters {Sj,b, cj,b}Jj=1 for the next tree to solve a

problem of the form

{
Ŝj,b, ĉj,b

}J

j=1
= min

{Sj,b,cj,b}J
j=1

T−1∑

t=0

[
yt+1 −

(
fb−1 (xt) + Tb

(
xt; {Sj,b, cj,b}Jj=1

))]2
.

For a given set of state definitions (“splits”), Sj,b, j = 1, . . . , J , the optimal constants, cj,b, in each

state are derived iteratively from the solution to the problem

ĉj,b = min
cj,b

∑

xt∈Sj,b

[yt+1 − (fb−1 (xt) + cj,b)]
2

= min
cj,b

∑

xt∈Sj,b

[et+1,b−1 − cj,b]
2 ,

where et+1,b−1 = yt+1−fb−1 (xt) is the empirical error after b−1 boosting iterations. The solution to

this problem is the regression tree that most reduces the average of the squared residuals
∑T

t=1 e
2
t+1,b−1,

and ĉj,b is the mean of the residuals in the j-th state.

Forecasts are simple to generate from this approach. The boosted regression tree is first estimated

using data from t = 1, . . . , t∗. Then, the forecast of yt∗+1 is based on the model estimates and the

value of the predictor variable at time t∗, xt∗ . Boosting makes it more attractive to employ small trees

(characterized by few terminal nodes) at each boosting iteration, reducing the risk that the regression

trees will overfit. Moreover, by summing over a sequence of trees, boosting performs a type of model

averaging that increases the stability and accuracy of the forecasts.
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2.3 Implementation

We implement our BRT model by following Gu, Kelly, and Xiu (2020). We divide our sample period

(1963-2019) into 12 years of training sample (1963-1974), 12 years of validation sample (1975-1986),

and the remaining 33 years (1987-2019) for out-of-sample testing. We begin the out-of-sample period

in 1987 in order to align with Gu, Kelly, and Xiu (2020).

We refit our model every year because our fundamental signals are updated annually. Each time

we refit the model, we increase the training sample by one year while maintaining the length of the

validation period at 12 years. This recursive window approach allows for the incorporation of all

available information in generating forecasts. Every year, we generate return forecasts for all the

stocks in our sample. We then construct decile portfolios based on the predicted returns. We hold

these portfolios for 12 months and rebalance them every year. Our long-short strategy goes long in

the decile portfolio with the highest BRT expected returns and short in the decile portfolio with the

lowest BRT predicted returns.

To generate return forecasts, we need to estimate the model’s parameters using the training data

and specify two key hyper-parameters, i.e., the number of boosting iterations and the BRT shrinkage

parameter (also known as the learning rate). To choose these two hyper-parameters, we adopt the

commonly used grid search with validation procedure (Hastie, Tibshirani, and Friedman, 2009; Gu,

Kelly, and Xiu, 2020).9 We leave all other tuning parameters at their LightGBM default values.

Specifically, we first use the training sample to estimate the model under each set of hyper-

parameter values. We then use the hyper-parameters that show the best performance during the

validation period to re-estimate the final model. For example, suppose we want to forecast the cross-

section of stock returns for 1987. We fit models under different hyper-parameter values during the

training period 1963-1974 and then use the validation period 1975-1986 to gauge the performance of

these trained models. We choose the hyper-parameters that deliver the best performance during the

validation period and then use these hyper-parameters to re-estimate the final model for the combined

training and validation period 1963-1986. When we move forward and forecast the cross-section of

stock returns for 1988, our validation period rolls forward by one year and stays at 12 years, i.e.,

1976-1987, while our training period increases by one year and goes from 1963 to 1975 (13 years).10

Our fundamental signals contain missing values. Although BRT can handle missing values, we
9Our grid for the number of boosting iterations is {100, 250, 500, 750, 1000}, while our grid for the learning rate is

{0.01, 0.05, 0.10}.
10We show in Section 4.2 that our main results are robust to alternative training and validation periods.
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pre-process the missing values to make BRT forecasts comparable to other machine learning methods

that cannot handle missing values. Specifically, we follow the approach of Gu, Kelly, and Xiu (2020)

and replace missing values with the cross-sectional median.11 Recall that we have normalized all

non-missing fundamental signals to the [−1,+1] interval by using their cross-sectional ranks. By

construction, the cross-sectional median of the transformed signals is zero. We, therefore, assign all

missing values as zero.12

Performance Evaluation

Each year we sort all sample stocks into deciles based on BRT predicted returns, construct equal-

and value-weighted portfolios, and focus on the long-short strategy that buys stocks in the top decile

and shorts stocks in the bottom decile. We estimate CAPM 1-factor, Fama-French 3-factor, Carhart

4-factor, Fama-French 5-factor, Fama-French 5-factor + Momentum factor, and Q factor models by

running the following time-series regressions:

rt = α+ β MKTt + εt

rt = α+ β MKTt + s SMBt + h HMLt + εt

rt = α+ β MKTt + s SMBt + h HMLt + u UMDt + εt

rt = α+ β MKTt + s SMBt + h HMLt + r RMWt + c CMAt + εt

rt = α+ β MKTt + s SMBt + h HMLt + r RMWt + c CMAt + u UMDt + εt

rt = α+ β MKTt + s SMBt + r ROEt + i IAt + εt

where rt is the long-short portfolio return based on BRT-generated forecasts for month t, and MKT ,

SMB, HML, UMD, RMW , CMA, ROE, and IA are market, size, value, momentum, profitability,

investment (FF5), return on equity, and investment (Q) factors (Carhart, 1997; Fama and French,

2015; Hou, Xue, and Zhang, 2015). We focus on the alpha estimates and their t-statistics estimated

using Newey and West (1987) standard errors.
11Chen and McCoy (2022) provide a rigorous justification for the use of mean/median imputation in machine learning

studies. Specifically, Chen and McCoy (2022) compare different imputation methods in machine learning applications,
and they find that simply imputing with cross-sectional averages does a surprisingly good job of capturing expected
returns. Specifically, they find that mean/median imputation and sophisticated imputation methods lead to similar
results. They argue that cross-sectional returns predictors are largely independent, and the independence implies
observed predictors are uninformative about missing predictors, making ad-hoc methods valid.

12The performance of the BRT portfolios is similar without pre-processing the missing values.
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2.4 Look-ahead bias versus data-mining bias

The main argument of our paper is that, from an investor’s perspective, machine learning strategies

based on subsequently discovered anomaly variables cannot be implementable in real time. Real-time

investors could not have known what anomalies would be published decades later. Assuming otherwise

leads to a significant look-ahead bias and potentially inflates the economic gains for real-time investors.

We note that this is a distinct point from McLean and Pontiff (2016) in that they analyze what they

call statistical biases while we are focusing on the effect of a look-ahead bias in existing ML research.

McLean and Pontiff (2016) use the term “statistical biases” to describe a broad array of biases

inherent to the research and publication process, including data mining (i.e., many researchers search

through many potential predictive signals in an effort to find significant relations) and the publication

bias (it is easier to publish a significant result than a non-result). For ease of exposition, we will refer

to these biases collectively as “data-mining bias” in our discussion below.

McLean and Pontiff (2016) show that anomaly returns are 26% lower out-of-sample and 58% lower

post-publication. The 26% is their estimate of data-mining effects. The difference between the 58%

and the 26%, i.e., the 32%, captures the effect of informed arbitrage according to McLean and Pontiff

(2016). It shows that once a certain anomaly is published and disseminated, this information becomes

available to market participants who act on it and arbitrage the anomaly away. The implication is

that the observed predictability may no longer hold in subsequent periods or may be much weaker.

This is not because of any bias in the initial study itself but rather because the publication of the

study changed the underlying market dynamics.

In contrast to the data-mining bias, the look-ahead bias is a bias that arises when researchers use

information that was not available at the time the strategy would have been implemented in the real

world. In other words, it’s a problem of using future information to make past decisions. This often

occurs when researchers use variables that have been discovered or updated in the literature but which

would not have been known or available to traders at the time the trading decisions were supposedly

being made. As a result, the profitability of a trading strategy might be significantly overstated since

it was actually based on information that could not have been used in real-time trading.

The data-mining bias and the look-ahead bias are distinct from each other in that the former

typically arises in the context of evaluating in-sample predictability by econometricians who study

the economy ex-post, whereas the latter typically arises in the context of evaluating the out-of-sample
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performance of a trading strategy by real-time investors.

Both data-mining effects and look-ahead biases can lead to overstatements of predictability or

profitability (with the former inflating the in-sample predictability and the latter inflating the out-of-

sample or real-time performance of the trading strategies), but they arise from different sources. The

statistical bias arises from sampling variation and the selective nature of the research and publication

process. The look-ahead bias arises from the inappropriate use of future information in a historical

simulation of a trading strategy. Recognizing and understanding these biases is important for both

researchers and practitioners in financial markets.

3 Main Results

In this section, we report the main results of our paper. We start by reporting in Section 3.1 the

baseline results that compute the out-of-sample realized returns for BRT portfolios. We then report

in Section 3.2 the abnormal performance of the BRT portfolios that control for various risk factors.

Section 3.3 examines the performance of BRT long-short portfolios across large and small stocks.

Section 3.4 uses an alternative machine learning method, i.e., neural networks. Section 3.5 examines

the machine learning performance based on a universe of past-return signals. Section 3.6 examines

whether our ML implementation can generate high long-short returns and Sharpe ratio using published

predictors. Section 3.7 quantifies the role of short-term reversal in explaining the performance of

our and previous machine learning strategies. Finally, Section 3.8 examines the after-trading-cost

performance of our machine learning strategies.

3.1 Baseline Results

Table 1 shows the results of our baseline analysis. As stated earlier, we sort stocks into deciles each

year based on one-year-ahead BRT predicted returns. We then construct a long-short portfolio that

buys stocks with the highest BRT predicted returns and sells stocks with the lowest BRT predicted

returns. We track the performance of these portfolios for 12 months. Following Gu, Kelly, and Xiu

(2020), we report in Table 1 the BRT predicted returns (i.e., the sorting variable), the average realized

returns, the standard deviation of realized returns, and the Sharpe ratios of BRT-sorted portfolios.

The left panel of Table 1 focuses on equally weighted portfolios. The first column shows the BRT

predicted return, which is by construction monotonically increasing from decile 1 (-0.04% per month)
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to decile 10 (1.69% per month). The second column reports the out-of-sample average realized return

for each portfolio: our primary variable of interest. We find that the performance of BRT portfolios

increases nearly monotonically from decile 1 (-0.01%) to decile 10 (0.94%). The long-short portfolio

earns an average return of 0.95% per month (or 11.4% per year), with a highly significant t-statistic

of 6.63.

The standard deviation of the realized returns is U-shaped across the BRT decile portfolios, i.e.,

the portfolios with the lowest and the highest BRT predicted returns have higher volatilities than the

other portfolios. Not surprisingly, we find that the long-short portfolio has a much lower volatility

than the long-only portfolios. Finally, the last column of the left panel reports the annualized Sharpe

ratio, which ranges from -0.01 to 0.48 across the ten BRT decile portfolios. The Sharpe ratio of the

long-short portfolio is much higher at 1.02, which is primarily driven by the lower volatility of the

long-short portfolio.

Equally weighted portfolios tend to overweight small-cap stocks that can be harder and more

expensive to trade (e.g., Fama and French (2008) and Novy-Marx and Velikov (2016)). To mitigate

this issue, we examine in the right panel of Table 1 the value-weighted portfolio returns. The BRT

predicted return is again by construction monotonically increasing from decile 1 (0.00%) to decile 10

(1.61%). More importantly, the realized average portfolio return also increases from decile 1 (0.40%)

to decile 10 (0.80%), although the relation is far from monotonic. The spread between decile 10 and

decile 1 is 0.40% per month, or 4.8% per year.13 Even though this spread is statistically significant

at the 5% level, its magnitude is less than half of the spread for equally weighted portfolios. The

Sharpe ratio exhibits a similar pattern, higher for decile 10 (0.47) than for decile 1 (0.22). The Sharpe

ratio for the long-short portfolio is underwhelming at 0.30. As a comparison, the Sharpe ratio for

the market portfolio over the same period is 0.45. Therefore, the out-of-sample performance of our

real-time machine-learning strategies is economically modest.

Overall, we show in Table 1 that long-short portfolios formed based on BRT forecasts earn sta-

tistically significant returns, especially in equal-weighted portfolios. The magnitude of the long-short

performance, however, is much lower than those documented in the prior literature. For example, the

BRT models in Gu, Kelly, and Xiu (2020) achieve an equally weighted monthly long-short portfolio

return of 2.14% per month and a Sharpe ratio of 1.73. The corresponding numbers for value-weighted
13These returns are before trading costs. We report the before-trading cost performance of our machine learning

strategies for ease of comparison with prior literature (e.g., Chen, Pelger, and Zhu (2022); Freyberger, Neuhierl, and
Weber (2020); Gu, Kelly, and Xiu (2020)). In Section 3.8, we examine the after-trading-cost performance of our machine
learning strategies.
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portfolios are 0.99% per month and a Sharpe ratio of 0.81.14 The long-short portfolios formed based

on neural network forecasts perform even better in Gu, Kelly, and Xiu (2020), earning an average

return of 3.27% per month and an annualized Sharpe ratio of 2.45 in equal-weighted portfolios and an

average return of 2.12% per month and a Sharpe ratio of 1.35 in value-weighted portfolios. Similarly,

Chen, Pelger, and Zhu (2022) report an out-of-sample Sharpe ratio of 2.60 and Freyberger, Neuhierl,

and Weber (2020) report that their model delivers an out-of-sample Sharpe ratio of 2.75. To sum up,

while our results indicate that machine learning methods show promise in predicting stock returns,

they are less extreme than those presented in the prior literature. The main difference between our

paper and prior studies is that we employ a universe of fundamental signals that could have been em-

ployed ex-ante by a real-time investor. The conditioning information set we adopt is, therefore, free

from data-mining concerns and look-ahead biases. Once we control for a more realistic information

set, our results indicate that the economic gains to real-time investors from using machine learning

methods are substantially smaller than previously documented.

3.2 Controlling for Common Risk Factors

The results in Table 1 do not control for risk exposures. It could be that the long-short portfolios

based on BRT forecasts have positive and significant returns because they are exposed to well-known

sources of risk, such as value or profitability. Table 2 shows the risk-adjusted performance of our BRT

portfolios once we control for risk exposures using the six models described in Section 2.3. Irrespective

of whether we use the CAPM model (columns 1-2), the Fama-French 3-factor model (columns 3-4),

the Carhart 4-factor model (columns 5-6), the Fama-French 5-factor model (columns 7-8), the Fama-

French 5-factor model augmented with momentum (columns 9-10) or the q-factor model (columns

11-12), we find that portfolios with higher BRT predicted returns have higher average realized risk-

adjusted returns. Taking the Carhart 4-factor model as an example, we find that the alpha of decile

1 is negative and significant at -0.71% per month (t-statistic=-4.65), while the alpha of decile 10 is

0.37% per month (t-statistic=2.64). The resulting long-short portfolio has a monthly alpha of 1.08%

and is statistically significant with a t-statistic of 6.43.

The results for value-weighted risk-adjusted returns are weaker than the equal-weighted results—in

line with the findings in Table 1. Across the various risk-adjustment models, the monthly abnormal
14We note that we implement our BRT model using LightGBM, while Gu, Kelly, and Xiu (2020) implement using

scikit-learn. When we implement our model using scikit-learn in conjunction with our fundamental signals, we obtain
even less significant results than what we currently report in the paper.
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performance ranges from a minimum of 0.46% (5.52% annualized) for the CAPM to a maximum of

0.80% (9.60% annualized) for the Fama-French 5-factor model with momentum. In all cases, the

alphas of the long-short portfolios are statistically different from zero.

Consistent with the findings reported in Section 3.1, our results suggest that machine learning

tools indeed can help predict stock returns. Still, the degree of predictability is significantly lower

than what has been reported in the literature once we use as covariates the universe of signals that

investors could have constructed in real-time and not the ones that have shown to be successful ex-post

in predicting the cross-section of stock returns.

3.3 Focusing on Stocks with Different Market Capitalizations

The strategies we examine in this paper are more likely to be implemented by institutional investors

rather than individual investors because they are the ones with the resources and sophistication to

use machine learning methods. Previous studies (e.g., Gompers and Metrick (2001)) have shown

that institutional investors prefer large-capitalization stocks because they are more liquid and more

investable. To evaluate whether the profitability of our machine learning strategies varies across

stocks with different capitalizations, each year we divide our sample stocks into two groups based

on the median market capitalization: those above the median are large stocks and those below the

median are small stocks. We then repeat our baseline analysis for each of these two groups of stocks

and report the results in Table 3.

The top panel of Table 3 reports the results for equal-weighted portfolios. We find that the raw

and risk-adjusted long-short returns are positive and significant for both large and smalls stocks. More

importantly, the long-short performance is significantly higher for small stocks than for large stocks.

Specifically, the long-short return is 0.63% per month (t-statistic=2.93) for the large stocks, and is

1.13% (t-statistic=6.14) for small stocks. The lower predictive performance for large stocks is not

surprising. These stocks are likely to incorporate new information more quickly and are hence less

likely to be predictable using machine learning algorithms.

The results for value-weighted portfolios are qualitatively similar. The average long-short return

for large stocks is only 0.27% (t-statistic=1.23). The long-short returns for large stocks do become

marginally significant when we control for risks using the Carhart 4-factor model, the Fama-French

5-factor model, the Fama-French 5-factor augmented with momentum, and the q-factor model. In

comparison, the average long-short return for small stocks is economically and statistically significant
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whether we examine raw or risk-adjusted returns. For example, the average long-short return for

small stocks is 1.16% (t-statistic=5.50).

Overall, the results in Table 3 indicate that the long-short performance of BRT portfolios is weaker

for large stocks than for small stocks. This finding suggests that machine learning methods are better

at predicting the returns of smaller stocks, for which news is incorporated more slowly into asset

prices. As institutional investors are reluctant to trade smaller capitalization stocks because they are

less liquid and less scalable, our results suggest that the benefits of machine learning strategies may

be even more limited for institutional investors.

3.4 Neural Networks

In our baseline analysis, we use BRT, which is one of the most powerful machine learning methods

for stock return predictions. Nevertheless, one might be concerned that our main results are model-

specific and may not extend to other machine-learning methods. To ensure this is not the case, we

extend our analysis to Neural Networks (NNs) mainly because—together with boosted regression

trees—NNs are among the top performers when it comes to return prediction (Gu, Kelly, and Xiu,

2020; Bianchi, Büchner, and Tamoni, 2021). We follow Gu, Kelly, and Xiu (2020) and conduct our

analysis using NNs with 1 to 5 hidden layers.

Our results, reported in Table 4, reveal several important findings. First, the equal-weighted

long-short returns based on NNs are generally significant, while the value-weighted long-short returns

are insignificant. Second, among equal-weighted portfolios, we find that shallow NNs perform better

than deep NNs. For example, NNs with 1 and 2 hidden layers achieve long-short returns of 0.66%

(t-statistics=3.19) and 0.85% per month (t-statistics=4.18), respectively. NNs with 3 or 4 hidden

layers exhibit much lower but still significant long-short returns, while NNs with 5 hidden layers

generate insignificant long-short portfolio returns. This finding is consistent with Gu, Kelly, and Xiu

(2020), who show that shallow learning performs better than deep learning. Third, the performance

of long-short portfolios based on neural network forecasts is much weaker than those documented by

prior machine learning studies, particularly for value-weighted portfolios. Gu, Kelly, and Xiu (2020),

for example, show that the long-short portfolios formed based on neural network forecasts earn an

average return of 3.27% per month in equal-weighted portfolios and an average return of 2.12% in

value-weighted portfolios. Overall, similar to BRT, our results based on neural networks suggest that

the real-time performance of machine learning strategies is more modest than that portrayed by prior
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studies.

3.5 Past-return Signals

Our analyses so far have focused on fundamental signals. The main reason for this focus is that we

can construct a “universe” of fundamental signals (Yan and Zheng, 2017). Past return-based signals

represent another class of signals for which we can construct an “exhaustive” list. In this section, we

follow Martin and Nagel (2022) and construct a universe of past return-based signals and then repeat

our main analyses.15 Specifically, we include in our universe the monthly returns during the past 120

months, excluding the most recent month.16 Therefore, we have 119 past return-based signals for this

analysis.

Our stock sample for this analysis consists of the NYSE, AMEX, and NASDAQ common stocks

(with a CRSP share code of 10 or 11) with valid past return data. We exclude those stocks with

a share price lower than $1 at the end of month t − 1. For ease of comparison with our analysis

of fundamental signals and previous machine learning studies, the sample period of our past-return

analysis spans from July 1963 to December 2019. We employ the same training, cross-validation, and

out-of-sample testing periods as in our study of fundamental signals.

We continue to use BRT as the primary machine-learning method. We also examine Neural

Networks with 1 to 5 hidden layers. As in our analysis of fundamental signals, we form long-short

portfolios of stocks based on the machine learning predicted returns. Specifically, we go long in the

stocks with the highest predicted returns and short in the stocks with the lowest predicted returns. We

track the performance of these portfolios for one month and compute the return spread between the

long and short portfolios. For performance evaluation, we report alphas for the long-short portfolio

using the CAPM, the Fama-French three-factor model, and the Carhart four-factor model, the Fama-

French five-factor alphas, Fama-French five-factor plus momentum factor alphas, and q-factor alphas.

We report results for both equal-weighted and value-weighted portfolios.

Table 5 report the results.17 We find that the BRT strategy based on past-return signals earns

an average return of 1.38% per month (t-statistic=4.93) and exhibits an annualized Sharpe ratio

of 1.04 in equal-weighted portfolios. The performance of value-weighted portfolios is significantly
15Moritz and Zimmermann (2016) and Murray, Xiao, and Xia (2022) also examine machine learning strategies based

on past-return signals.
16Martin and Nagel (2022) exclude the most recent month to avoid microstructure effects. In Section 3.7, we repeat

our analysis by adding the most recent month return to the predictor set.
17For brevity, we show decile-by-decile results in Table IA.18 in the Internet Appendix.
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weaker. The average long-short return is 0.78% per month (t-statistic=2.41), while the Sharpe ratio

is 0.46. The results based on neural network forecasts are qualitatively similar, with shallow networks

(NN1 through NN3) performing similarly to BRT and deep networks (NN4 and NN5) performing

significantly worse than BRT.

Risk-adjusted returns indicate that the performance is significantly reduced when we control for

the momentum factor. For example, the Carhart alpha is 1.09% (t-statistic=6.62) for equal-weighted

long-short portfolios and 0.63% (t-statistic=3.05) for value-weighted portfolios. The FF5+MOM

alpha is even lower, at 0.78% (t-statistic=5.83) for equal-weighted long-short portfolios and 0.28%

(t-statistic=1.55) for value-weighted portfolios. The smaller Carhart alpha and the FF5+MOM alpha

are not surprising because much of the predictive ability of past returns is related to the momentum

effect of Jegadeesh and Titman (1993).

Overall, our results based on past-return signals are broadly consistent with those based on funda-

mental signals. Specifically, we find significant long-short returns for our machine learning strategies,

suggesting that real-time investors do benefit from using machine learning forecasts. However, the

performance of these real-time machine-learning strategies is considerably weaker than those reported

in the prior literature.

We would like to point out that although we examine both fundamental signals and past-return

signals in our paper, our focus is on the fundamental signals. This is because, although one can

construct a “universe” of past return signals (e.g., the past 120 months of returns in our paper), most

of these signals are closely related to published, “known” predictors of stock returns. In particular,

prior literature has documented (i) the long-run reversal anomaly (e.g., De Bondt and Thaler (1985)),

which shows that past 3-5 years of returns negatively predict future returns; (ii) the momentum

anomaly (Jegadeesh and Titman, 1993), which shows that past 6 to 12 months of returns positively

predict future returns; (iii) the short-term reversal anomaly (e.g., Jegadeesh (1990)), which shows that

past one-month return is a negative predictor of future returns, and (iv) seasonality anomaly (Heston

and Sadka, 2008), which shows that lag returns at the 12-month frequency (i.e., t-12, t-24, t-36, etc.)

positively predict future returns. Collectively, these previous studies have shown that more than

half of the returns in the past 120 months are related to published predictors of stock returns.18 As

such, one might argue that the performance of machine-learning strategies based on these past-return

signals may also be biased upward due to potential look-ahead concerns.
18In comparison, while our universe of fundamental signals also contains published signals (it should; otherwise, it is

not a “universe”), published signals represent only a tiny fraction of our universe of fundamental signals.
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3.6 ML Implementation

One might be concerned that the relatively weak performance of our machine learning strategies is

perhaps due to our ML implementation not being as powerful as those employed in previous studies.

To evaluate this possibility, we replicate our ML results—both Boosted Regression Trees (BRT) and

Neural Networks (NN)—on samples of published anomalies.

The first sample is the Chen and Zimmermann (2022, CZ) predictors. We download the data from

https://www.openassetpricing.com/. We use the March 2022 data release, which includes 207

anomaly predictors.19 For ease of comparison with GKX, we also use the sample of 94 anomalies listed

in Green, Hand, and Zhang (2017, GHZ).20 We download the SAS code that generates the 94 predictors

from Jeremiah Green’s Web site at https://sites.google.com/site/jeremiahrgreenacctg/home.

The out-of-sample testing period for this analysis is 1987-2019, the same as that for our main analyses

based on fundamental signals and past-return signals.21

In Table 6, we report the results based on the GHZ sample of anomalies. We find that both

BRT and shallow Neural Networks (NN1 through NN3) deliver an out-of-sample long-short return in

excess of 3.5% per month for equally weighted portfolios and over 1.5% per month for value-weighted

portfolios, in line with the results in Gu, Kelly, and Xiu (2020). We find very similar findings when

we focus on risk-adjusted returns, as shown in the remaining columns of Table 6. We also find that

BRT and shallow Neural Networks generate a Sharpe Ratio between 2.35 and 2.95 in equal-weighted

portfolios. These numbers are consistent with prior literature (e.g., Gu, Kelly, and Xiu (2020)) as our

ML implementation could generate Sharpe ratios of around 2.5 using published predictors.

In Table 7, we report the results that use the Chen and Zimmermann (2022) covariates. The

results for this set of covariates are even more impressive. For example, BRTs generate an equal-

weighted long-short return of 5.18% per month and a VW long-short return of 2.32% per month.

Adjusting for risk using standard models reveals very similar findings. Furthermore, BRTs deliver an

equally-weighted Sharpe Ratio of 3.68. The results for shallow Neural Networks are somewhat lower

than those of BRTs but still very strong.
19The definitions of these variables are available at https://www.openassetpricing.com/march-2022-data-release/.
20GKX construct their data set based on GHZ’s 94 characteristics, and GKX modified some variable definitions, see

Gu, Kelly, and Xiu (2020, footnote 30). The GKX shared data set stops at 2016, and we cannot extend the data set.
We also performed our analysis using GKX’s shared data set and found similar magnitude of performance from 1987
to 2016.

21We also consider three alternative out-of-sample testing periods, namely 1987-2016, 1991-2004, and 1991-2014.
The performance of machine-learning strategies during these alternative sample periods is qualitatively similar to and
quantitatively stronger than that for 1987-2019.
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Taken together, these results indicate that, our ML implementation is capable of generating rather

strong performance when we use published predictors. Of course, as we have argued, machine learning

strategies based on subsequently discovered anomalies cannot be implemented in real time and their

performance is likely inflated due to a look-ahead bias. Nevertheless, the fact that we are able to

replicate the strong ML performance of previous studies when we use published predictors indicates

that our ML implementation is not the reason why the performance of ML strategies based on our

universe fundamental signals is relatively weak.

3.7 The Role of Short-term Reversal

As noted earlier, we exclude short-term reversal (past one-month return) from our universe of past-

return signals. Prior studies including Gu, Kelly, and Xiu (2020), Freyberger, Neuhierl, and Weber

(2020), and Chen, Pelger, and Zhu (2022), however, include short-term reversal in their predictor

sets. As such, one might reasonably wonder about the role of short-term reversal in explaining

the performance difference between our machine learning strategies and those employed by previous

studies. In particular, is the strong performance of previous ML strategies based on published factors

due to their inclusion of short-term reversal? Is the relatively weak performance of our ML strategies

driven entirely by the omission of short-term reversal in our predictor set?

We perform two analyses to address these questions. In the first analysis, we remove short-term

reversal from the samples of published factors and construct machine learning strategies based on the

remaining published factors. As before, we consider two samples of published factors: Green, Hand,

and Zhang (2017)’s 94 anomaly variables and Chen and Zimmermann (2022)’s 207 anomaly factors.

After excluding the short-term reversal factor, the GHZ sample includes 93 predictors, while the CZ

sample includes 206 factors. The out-of-sample period is 1987-2019.22

We report the performance of the above machine learning strategies in Table 8 (the GHZ sample)

and Table 9 (the CZ sample). For ease of comparison, we report, in each table, the performance of

the machine learning strategy including the short-term reversal first and then the performance of the

machine learning strategy excluding the short-term reversal.23

Overall, we find that excluding short-term reversal reduces the ML strategy performance. However,
22We also perform this analysis for alternative out-of-sample testing periods. For brevity, we report these results in

Table IA.12 and Table IA.13 in the Internet Appendix. The qualitative results for these sub-periods are the same as
those for 1987-2019.

23For brevity, we report raw long-short returns in Table 8 and Table 9. We report risk-adjusted returns in Table IA.14
and IA.15 in the Internet Appendix.
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the strong performance of the machine learning portfolios remains intact even after excluding short-

term reversal from the samples of published factors. For example, in Table 8, where we examine

the GHZ anomalies, we find that the equal-weighted long-short return for BRT strategy is 3.57% (t-

stat=8.91) when short-term reversal is included in the predictor set, and is 3.04% (t-stat=9.11) when

the short-term reversal is excluded. Table 9, where we examine the CZ anomalies, we find that the

equal-weighted long-short return for the BRT strategy is 5.18% (t-stat=9.91) when short-term reversal

is included in the predictor set, and is 4.87% (t-stat=10.05%) when short-term reversal is excluded.

The magnitude of the performance reduction is modest at best. Furthermore, the long-short returns of

these ML strategies, even after excluding short-term reversals, remain considerably higher than those

based on our universe of fundamental signals. Recall that the equal-weighted long-short return of the

machine learning strategy based on our universe of fundamental signals is “merely” 0.95% per month.

The results based on NN strategies and value-weighted portfolios are qualitatively similar. That is, we

find that the performance of NN strategies is quantitatively reduced, but remains qualitatively similar

even after excluding short-term reversal, suggesting that short-term reversal alone cannot explain the

extraordinary performance of the machine learning strategies based on published factors.

In the second analysis, we add short-term reversal to our set of past-return signals and repeat

our machine learning analysis. As a result of this addition, we have 120 past monthly returns in the

predictor set. We report the performance of this ML strategy in Table 10. The results reveal a modest

increase in the ML performance after short-reversal is added to the predictor set. For example, the

EW long-short return for the BRT strategy is 1.38% (t-stat=4.93) without short-term reversal and

is 1.81% (t-stat=6.40) with short-term reversal. The VW long-short returns increase from 0.78%

(t-stat=2.41) without short-term reversal to 0.98% (t-stat=3.14) with short-term reversal.

Overall, we find that the omission of short-term reversal does have a moderate impact on the

performance of our ML strategy. However, the long-short returns, even after including short-term

reversal, remain significantly lower than those for the ML strategies based on GHZ and CZ samples of

published factors. These results once again suggest that short-term reversal alone cannot explain the

performance difference between our machine learning strategies and those based on published factors.

3.8 After-trading-cost Performance

For ease of comparison with prior literature (e.g., Gu, Kelly, and Xiu (2020); Freyberger, Neuhierl,

and Weber (2020); Chen, Pelger, and Zhu (2022)), we focus on the gross performance of our machine
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learning strategies in this paper. There is, however, growing attention to trading costs in the anomaly

literature and ML literature (e.g., Novy-Marx and Velikov (2016); Chen and Velikov (2022); Jensen

et al. (2022)). In this section, we provide a simple analysis of the net performance (after-trading-cost

returns) of our machine learning strategies.

We follow the general approach of Chen and Velikov (2022) to calculate turnover, trading costs,

and net returns to long-short trading strategies. We also use their low-frequency (LF) measures of

effective spreads as our trading cost measure.24 These four LF measures are (i) Hasbrouck (2009)’s

Gibbs sampler estimate, (ii) Corwin and Schultz (2012)’s high-low measure, (iii) Kyle and Obizhaeva

(2016)’s volume-over-volatility measure, and (iv) Abdi and Ranaldo (2017)’s close-high-low measure.

Following Chen and Velikov (2022), we use the average of the four low-frequency (LF) measures of

effective spreads.

In Table 11, we show that the turnover rate for our BRT strategy based on fundamental signals

is fairly low, with a two-sided turnover of 14% per month for both EW portfolios and VW portfolios.

These relatively low turnover rates are not surprising because most of the fundamental signals are

updated annually and we rebalance our portfolios once a year. We find that trading costs account

for significantly less than half of the gross returns to our ML strategy. The net returns to the BRT

strategy remain positive, at 0.73% per month for EW portfolios and 0.25% for VW portfolios. The net

returns of NN strategies are mixed, with some being positive and others negative. We note that the

gross returns reported here are slightly different from those of our baseline analysis. This is because

the trading cost data is available only up to 2017, so the sample period for this analysis is slightly

shorter than our baseline analysis.

Table 12 reports the corresponding results for our past-return-based machine-learning strategies. In

contrast to those for fundamental signals, we find that the turnover rate for past-return-based machine-

learning strategies is extremely high, well over 100% in both equal- and value-weighted portfolios. As

a consequence, we find that net returns to machine learning strategies are consistently negative. For

example, the net return for BRT strategies is -0.97% per month for equal-weighted portfolios and

-0.29% for value-weighted portfolios. Adding short-term reversal to the predictor set improves the

gross returns but makes the net returns even worse. Specifically, the net return is -1.48% per month

for equal-weighted portfolios and -0.40% for value-weighted portfolios after including the short-term
24Due to the data availability issue, we do not adopt their high-frequency (HF) measures of effective spreads. We

download the LF data from Andrew Chen’s website at https://sites.google.com/site/chenandrewy/. We note their
data is available up to 2017, so our analysis ends in 2017.
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reversal. The results for NN strategies are mostly worse than those for BRT strategies.

Chen and Velikov (2022) note that LF spreads are biased upward by 25-50 basis points (compared

to HF effective spreads) post decimalization. As such, the net returns to our machine learning strate-

gies reported in Table 11 and Table 12 may be too low. We decided not to make an ad-hoc adjustment

related to this bias because despite their upward bias relative to HF spreads, the LF spreads may

underestimate the total trading costs because they do not include other important components of

trading costs, such as the cost of short selling and price impact. The shorting cost is particularly

important for us because our machine learning strategies are long-short strategies.

Overall, we show that the net performance of ML strategies is positive for fundamental signals and

negative for past-return signals. We acknowledge that our analysis is exploratory and preliminary.

An in-depth trading cost analysis that incorporates HF spreads, shorting cost, and price impact is a

promising area of future research in the machine learning literature.25

4 Additional Results

In this section, we provide several extensions of our baseline analysis. Section 4.1 employs rolling

windows instead of recursive windows in estimating the BRT model. Section 4.2 studies whether our

results are robust to alternative training and validation periods. Section 4.3 examines different subsets

of our universe of fundamental signals. Section 4.4 we compute the in-sample performance of BRT

portfolios and then compare it with the out-of-sample performance. Finally, Section 4.5 investigates

whether the performance of BRT portfolios varies with economic and market conditions. For brevity,

we report the results of these additional analyses in the Internet Appendix.

4.1 Rolling Windows

We use recursive windows in our baseline specification to align ourselves with the majority of the

literature (e.g., Gu, Kelly, and Xiu (2020)). Recursive windows allow for incorporating all available

information in generating forecasts, but they can lead to poor forecasts if the data-generating process

changes over time. An alternative to recursive windows is rolling windows that generate forecasts based

on less information and hence are potentially less precise but are more robust to time variations in the

relation between fundamental signals and returns. If the relation between the fundamental signals and
25We also examine the after-trading cost performance of machine-learning strategies based on the GHZ and CZ samples

of published anomalies. For brevity, we report the results in Table IA.16 and Table IA.17 in the Internet Appendix.
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stock returns is time-varying, rolling windows may improve the predictive power of machine learning

algorithms. To assess this possibility, we repeat our main analysis using the rolling window approach

described below.

We set the initial estimation period to 24 years so that our out-of-sample test period starts from

1987, the same as in the recursive window approach. To select the optimal hyper-parameters, we split

the 24 years into training and validation periods following our baseline specification. In particular,

our training period is 12 years, and the validation period is 12 years.26 After obtaining the optimal

hyper-parameters, we re-estimate the final model using the 24-year window. Each year we refit the

model by moving the 24-year window forward by one year. The estimation period is fixed at 24

years under the rolling window approach. In comparison, under the recursive window approach, the

estimation period expands as we roll forward.

Table IA.1 presents the performance of BRT portfolios for the rolling window approach. We find

that the equally weighted portfolios achieve a long-short return of 0.83% per month (t-statistic=4.29)

and a Sharpe ratio of 0.77. These numbers are lower than their counterparts for the recursive window

approach. Specifically, in Table 1 we report that the equal-weighted portfolios exhibit a long-short

return of 0.95% (t-statistic=6.63) and a Sharpe ratio of 1.02. The risk-adjusted returns for the rolling

window approach are also correspondingly lower than those for the recursive window approach. The

results for value-weighted portfolios paint a similar picture. For example, the average long-short

return is 0.33% (t-statistic=1.35) under the rolling window approach, compared to the 0.40% (t-

statistic=2.34) under the recursive window approach. Overall, we find that the performance of BRT

portfolios is somewhat weaker for the rolling window approach than for the recursive window approach.

4.2 Alternative Training and Validation Periods

In our baseline specification, we use an initial training period of 12 years and a validation period of

12 years. In comparison, Gu, Kelly, and Xiu (2020) employ an initial training period of 18 years

and a validation period of 12 years. As explained earlier, we choose an initial training period of 12

years because we want to start our out-of-sample test period in 1987, the same as in Gu, Kelly, and

Xiu (2020). In this section, we examine whether our results are robust to our choices of the initial

training period and validation period. Specifically, we consider nine alternative specifications in which

the initial training period varies from 10 to 18 years, while the validation period varies from 10 to 14
26We have considered several alternative training and validation periods and find our results to be qualitatively similar.
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years. We examine the performance of BRT portfolios under each of these alternative specifications.

Table IA.2 presents the results. The top panel reports the results for equal-weighted portfolios,

while the bottom panel reports the results for value-weighted portfolios. For convenience, we reproduce

the results for our baseline specification in the first row of each panel. Our baseline specification is

denoted as “12+12”, meaning 12 years of initial training period and 12 years of validation period.

We denote the alternative specifications similarly. For example, “18+12” means 18 years of initial

training and 12 years of validation period.

Overall, our results are highly robust across all alternative specifications. For example, the equal-

weighted long-short returns range from 0.87% to 1.02% across the alternative specifications, compared

to 0.95% for the baseline specification. Similarly, the value-weighted long-short returns range from

0.37% to 0.55% across the alternative specifications, compared to 0.40% for the baseline specification.

The level of statistical significance for the long-short returns is also similar between the baseline and

alternative specifications. Finally, the results on risk-adjusted returns are also robust to alternative

specifications of initial training and validation periods.

4.3 Results Obtained on Subsets of the Fundamental Signals

Our baseline analysis employs a large number of predictor variables. Specifically, we construct a

universe of 18,113 fundamental signals based on permutations of 240 accounting variables and 76

financial ratio configurations. One may argue that not all of these signals are actually considered by

real-time investors and that the inclusion of these signals weakens the out-of-sample performance of

our machine learning strategies. As noted earlier, BRT are known to be robust to the inclusion of

irrelevant predictors. Nevertheless, to explore whether our relatively weak out-of-sample performance

is driven by the large number of signals in our universe, we repeat our analysis on various subsets of

the fundamental signals used in our baseline analysis.

4.3.1 Results using Subsets of the 240 Accounting Variables. In this section, we re-compute

our baseline results for subsets of 240 accounting variables ranked based on the percentage of miss-

ing values across all stocks for the period 1963-2019. Some accounting variables are missing for all

firms before a certain year. For example, all cash flow statement variables are missing before 1988.

Including the years for which these variables were missing would artificially inflate their missing value

proportions, so when computing the missing rate for an accounting variable, we exclude those years

30



for which the variable is missing for all stocks. Appendix B reports the missing rates for all the 240

accounting variables in our data. Consistent with our expectation, we find that accounting variables

with fewer missing values tend to be more important variables. For example, only 0.01% of the “total

assets” are missing. For “total sales”, the missing rate is also extremely low at 0.05%. In comparison,

71.1% of the “non-recurring discontinued operations” are missing.

The first row in each panel of Table IA.3 shows the BRT performance based on the fundamental

signals constructed using the 30 accounting variables with the fewest missing values. The second row

expands the set to 60 accounting variables with the lowest missing value rates. Each of the remaining

rows increases the number of accounting variables by 30 compared to the previous row. The last

row includes all 240 accounting variables, i.e., the entire universe of signals examined in our baseline

analysis.

Examining equally weighted portfolio returns reported in the top panel, we find that the long-short

performance is the worst when we include only the 30 accounting variables with the lowest missing

value rate in our universe. Specifically, the equally weighted long-short return is 0.34% per month,

statistically insignificant with a t-statistic of 1.07. As we increase the number of accounting variables

in the subset, the portfolio performance generally improves. For example, the long-short portfolio

based on 60 accounting variables delivers an average monthly return of 0.71% (t-statistic=2.09), while

the one based on 210 accounting variables has an average return of 1.26% (t-statistic=6.67). The best

performance is achieved when the number of accounting variables equals 180 or 210. We do observe

a decline in performance as we increase the number of regressors from 210 to 240. The bottom panel

of Table IA.3 reports the results for value-weighted portfolios. Similar to the equal-weighted results

discussed above, we find that the performance of value-weighted portfolios generally increases with

the size of the subset and peaks when the number of accounting variables is in the 180-210 range.

Overall, our results indicate that increasing the number of accounting variables included in the

analysis enlarges the conditioning information set that can be exploited by real-time investors and

generally increases the profitability of the machine learning strategies. This finding is inconsistent

with the argument that the relatively weak performance of our machine learning strategies is due to

the large size of our universe.

4.3.2 Results using Subsets of Financial Ratio Configurations. In this section, we repeat

our baseline analysis on several subsets of the 76 financial ratio configurations. In constructing the
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universe of fundamental signals, we follow Yan and Zheng (2017) and use 15 base variables (Y) in

addition to the 240 accounting variables (X). We refer the readers to Yan and Zheng (2017) for more

details. We consider two subsets of Y’s based on the importance of such base variables. The first

subset includes the three most commonly used base variables—i.e., total assets, total sales, and market

cap—which we term “Y3.” The second subset (termed “Y5”) includes two additional important base

variables, i.e., total liability and shareholder’s equity.

We also split the 76 financial ratio configurations into five categories based on their functional

forms. The first category (P1) includes the ratios of accounting variables to base variables (i.e., the

ratios #1 to #15 in Appendix C). The second category (P2) includes the change of ratios in the first

category (i.e., the ratios #16 to #30). The third category (P3) contains the percentage change of

ratios in the first category, or the ratios #31 to #45). The fourth category (P4) contains changes in

accounting variables scaled by lagged base variables (i.e., the ratios #46 to #60). The fifth category

(P5) includes the difference between the percentage changes in both accounting variables and base

variables (i.e., the ratios #61 to #75).27

The top panel of Table IA.4 shows the BRT equal-weighted portfolio performance on the two

subsets of the base variables and the five subsets of the financial ratio configurations. The equal-

weighted long-short portfolio returns are positive and statistically significant regardless of which subset

we examine. For example, when we use the three most important base variables (Y3), BRT achieve

a significant long-short return of 0.89% per month, with an associated t-statistics of 4.51. Adding

two additional base variables (Y5) leads to a long-short portfolio return of 0.90%, also statistically

significant. Similar results hold for subsets from P1 to P5, where the average long-short returns range

from 0.53% to 0.82%. It is important to note that the long-short returns for all seven subsets of

financial ratios are lower than that for the full universe of fundamental signals (0.95%). The bottom

panel of Table IA.4 repeats the exercise for value-weighted returns. As in our baseline analysis, value-

weighted returns are weaker than equal-weighted returns and often lack statistical significance. We

also find that the value-weighted long-short returns for subsets of financial ratios are generally lower

than that for the full universe of fundamental signals. The only exception is the subset Y5. Overall,

Table IA.4 shows little systematic evidence that the performance of our machine learning strategies

would be much better had we considered a significantly smaller universe of fundamental signals.
27We note that for each category, we also include the percentage change of the accounting variable itself, i.e., the ratio

#76 in Appendix C.
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4.4 In-sample Performance versus Out-of-sample Performance

Standard asset pricing models assume rational expectations, i.e., investors know the model or the data-

generating process. Martin and Nagel (2022) argue that, in the age of Big Data, this is unrealistic

and that investors face a high-dimensional prediction problem instead. A central prediction of Martin

and Nagel (2022) is that there should be a substantial wedge between in-sample and out-of-sample

predictability. We follow Martin and Nagel (2022) and analyze data from the perspective of real-

time investors. Moreover, we test their prediction by comparing the in-sample and out-of-sample

performance of a universe of fundamental signals.

In Sections 3.1 and 3.2, we have already examined the out-of-sample performance of our universe of

fundamental signals. We find that the long-short portfolios based on BRT forecasts earn positive and

significant returns out of sample. For ease of comparison, the sample period for our in-sample analysis

is the same as that for the out-of-sample test (i.e., 1987-2019). To conduct the in-sample analysis, we

fit our BRT model using the full set of 18, 113 fundamental signals and use the fitted model to predict

each year’s returns. There is no consensus on how in-sample tests should be conducted in a machine-

learning context. For robustness, we perform our test in two ways. In the first, we aim to maintain

comparability with the out-of-sample analysis in Section 3.1 and select the optimal hyper-parameters

using data from 1963 to 1986. We then use these hyper-parameters to perform an in-sample analysis

for 1987-2019. In the second, we align our analysis with Martin and Nagel (2022) and select the

optimal hyper-parameters using leave-one-year-out cross-validation over 1987-2019. The procedure

uses a particular year t as the validation period and the remaining years as training periods. We

choose the combination of hyper-parameters with the highest average validation performance across

all years. Finally, we retrain and test the model for the entire 1987-2019 period using the optimally

selected hyper-parameters.

We employ two performance metrics for our analyses. The first is the R2 of the predictive regres-

sion. The second is the long-short portfolio return. Figure IA.1 in the Internet Appendix plots the

times-series of in-sample and out-of-sample return predictability over the period 1987-2019. In Panel

A, we compute cross-sectional predictive R2s, but instead of averaging across all periods, we compute

and plot 12-month moving averages. We depict the results for the two in-sample specifications in

orange and red, respectively, and the out-of-sample results in blue. We also plot in dark grey the

two-standard-error band around the out-of-sample R2s. Panel B plots the BRT long-short portfolio
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returns for the two in-sample specifications and the out-of-sample long-short returns, adopting the

same structure as Panel A. Both panels show that the in-sample predictability is consistently higher

than the out-of-sample predictability. The gap between in-sample and out-of-sample predictability is

often substantial, e.g., in the early 2000s. Overall, across both performance metrics, we find a sig-

nificant degradation from in-sample performance to out-of-sample performance, consistent with the

predictions of the theoretical model developed in Martin and Nagel (2022).

4.5 Testing for Time-varying Predictability

In Table IA.5, we examine whether the profitability of BRT strategies varies with economic and market

conditions. Specifically, we split our sample period based on investor sentiment,28 the VIX index also

known as the “fear-gauge”, market liquidity (Pástor and Stambaugh, 2003), business cycle indicators

as published by NBER, and market state—proxied by the cumulative market returns over the previous

24 months. We also divide our sample period into two halves (1987-2003 and 2003-2019) to examine

whether the predictability declines over time.

Panel A shows the long-short portfolio returns for high- and low-sentiment periods. When exam-

ining equal-weighted returns, we find significant predictability during both high- and low-sentiment

periods. In contrast, value-weighted long-short returns are only marginally significant during low-

sentiment periods and insignificant during high-sentiment periods. Whether we look at equal- or

value-weighted returns, the difference in long-short returns between high- and low-sentiment periods

is statistically insignificant. We find similar results in Panel B, where we divide the sample period

into high- and low-VIX periods, and in Panel C, where we divide periods into high- and low-liquidity

periods. In each panel, we find significant equal-weighted returns across both subperiods. The value-

weighted returns, however, are either insignificant or marginally significant. As in Panel A, we find

little significant evidence of differential predictability across subperiods. We also find little difference

in predictability between recession and expansion periods in Panel D.

In Panel E, we split the sample period into UP and DOWN market states based on previous

24-month cumulative market returns. We find that the long-short return is higher during UP state

than during DOWN state. Specifically, the equal-weighted long-short return is 1.24% during UP state

and 0.67% during DOWN state. Similarly, the value-weighted long-short return is 0.79% during UP

state and 0% during DOWN state. The differences in long-short returns between the UP and DOWN
28We obtain the investor sentiment’s data from Wurgler’s website at http://people.stern.nyu.edu/jwurgler/.
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states are economically large and statistically marginally significant. In Panel F, we divide our sample

period into two halves and find no statistically significant difference in predictability during the first

and second half of our sample period.

Overall, the results in Table IA.5 indicate that the return predictability implied by our real-time

machine learning strategies does not change significantly with investor sentiment, market volatility,

market liquidity, or business cycle. However, there is some evidence that the profitability of our BRT

strategies varies systematically with the market state. Finally, we find no evidence that the return

predictability differs significantly across the two halves of our sample period.

5 Conclusions

Recent studies document strong performance for machine learning-based investment strategies. Our

analyses paint a more conservative picture of the practical value of machine learning strategies for

real-time investors. The machine learning strategies examined by prior studies use subsequently

discovered anomaly variables as predictors of stock returns and cannot be implemented in real-time.

We construct machine learning strategies based on a “universe” of fundamental signals. The out-

of-sample performance of our strategies is positive and significant, but considerably weaker than

those documented by previous studies, particularly in value-weighted portfolios. We find similar

results when examining a universe of past return-based signals. The relative weak performance of

our machine-learning strategies is not due to our ML implementation, as we are able to replicate the

strong performance of machine learning strategies based on published anomalies. Nor is it driven by

the omission of short-term reversal in our predictor set. Finally, we find that our machine learning

strategies based on fundamental signals earn positive returns after trading cost, while those based

on past-return signals earn negative net returns. Overall, our results indicate that machine learning

strategies enhance investment performance, but the economic gains to real-time investors from using

machine learning forecasts are more modest than previously thought.
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Table 8: Performance of ML Portfolios on the GHZ Sample with and without Short-term Reversal

Method
GHZ94 GHZ93

Ret. t-stat SR Ret. t-stat SR
Equal Weight

BRT 3.57 8.91 2.35 3.04 9.11 1.80
NN1 3.78 9.74 2.69 3.22 9.99 2.46
NN2 3.87 9.93 2.95 3.37 10.68 2.30
NN3 3.94 10.09 2.84 3.27 10.57 2.48
NN4 2.94 9.59 2.27 2.30 8.91 1.84
NN5 1.70 5.92 1.33 0.72 3.65 0.62

Value Weight
BRT 1.51 4.53 0.71 1.11 3.67 0.52
NN1 1.68 4.84 0.85 1.42 4.42 0.77
NN2 1.87 5.18 0.99 1.60 5.75 0.85
NN3 1.71 4.93 0.90 1.50 4.34 0.84
NN4 1.37 6.32 0.82 0.97 3.45 0.58
NN5 0.69 3.78 0.49 0.30 1.46 0.22

This table reports the long-short returns for the portfolios sorted by ML predicted returns on the GHZ
sample of signals with and without short-term reversal from 1987 to 2019. We predict stock monthly
excess returns using signals from Green, Hand, and Zhang (2017). GHZ94 denotes the original 94
signals used by Gu, Kelly, and Xiu (2020), and GHZ93 denotes the 93 signals excluding short-term
reversal (or mom1m). We use a recursive window approach and select the optimal hyper-parameters
using a cross-validation approach. Our initial estimation period is 1963-1986. The first 12 years is
the training period and the second 12 years is the validation period. As we roll forward, the train-
ing period expands while the validation period stays at 12 years. The top panel reports results for
equal-weighted portfolios. The bottom reports results for value-weighted portfolios. All returns are
expressed in percent per month.
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Table 9: Performance of ML Portfolios on the CZ Sample with and without Short-term Reversal

Method
CZ207 CZ206

Ret. t-stat SR Ret. t-stat SR
Equal Weight

BRT 5.18 9.91 3.68 4.87 10.05 3.21
NN1 3.72 7.63 2.82 3.32 7.58 2.55
NN2 3.26 6.32 2.23 3.21 6.39 2.27
NN3 3.18 6.22 2.32 3.20 6.30 2.28
NN4 3.00 6.07 2.32 2.86 5.83 1.99
NN5 1.63 5.14 1.23 1.46 4.86 1.20

Value Weight
BRT 2.32 6.99 1.28 2.14 6.26 1.03
NN1 2.27 5.93 1.38 2.02 5.09 1.26
NN2 1.72 5.08 1.03 1.96 5.39 1.09
NN3 1.80 5.21 1.14 1.82 4.77 1.12
NN4 1.86 4.49 1.17 2.07 4.56 1.20
NN5 0.93 3.62 0.65 1.01 4.49 0.77

This table reports the long-short returns for the portfolios sorted by ML-predicted returns on the CZ
sample of signals with and without short-term reversal from 1987 to 2019. We use the March 2022 re-
lease from openassetpricing.com/data, which contains the 207 signals collected by Chen and Zim-
mermann (2022). CZ207 denotes the 207 signals, and CZ206 denotes the 206 signals after excluding
short-term reversal (Streversal). We use a recursive window approach and select the optimal hyper-
parameters using a cross-validation approach. Our initial estimation period is 1963-1986. The first 12
years is the training period and the second 12 years is the validation period. As we roll forward, the
training period expands while the validation period stays at 12 years. The top panel reports results
for equal-weighted portfolios. The bottom reports results for value-weighted portfolios. All returns
are expressed in percent per month.
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Table 10: Performance of ML Portfolios on Past-return Signals with and without Short-term Reversal

Method
TECH120 TECH119

Ret. t-stat SR Ret. t-stat SR
Equal Weighted

BRT 1.81 6.40 1.77 1.38 4.93 1.04
NN1 1.61 7.30 1.98 1.17 6.61 1.33
NN2 1.75 8.82 2.28 1.40 7.46 1.45
NN3 1.52 7.99 1.94 1.30 6.34 1.42
NN4 0.98 6.80 1.21 0.74 5.64 0.81
NN5 0.66 3.73 0.84 0.10 0.50 0.11

Value Weighted
BRT 0.98 3.14 0.66 0.78 2.41 0.46
NN1 0.72 2.90 0.56 0.87 4.29 0.72
NN2 1.26 4.87 1.02 1.06 4.34 0.78
NN3 1.07 4.10 0.80 1.00 3.79 0.80
NN4 0.92 4.19 0.78 0.38 1.68 0.31
NN5 0.50 2.45 0.43 0.32 1.30 0.26

This table reports the long-short returns of the portfolios sorted by BRT and NN predicted returns on
past-return signals with and without short-term reversal from 1987 to 2019. We predict stock monthly
excess returns using past-return signals. TECH120 denotes the previous 120 months return signals,
and TECH119 denotes the previous 120 months return signals, excluding the most recent month. Our
full sample period is 1963-2019 and the out-of-sample period is 1987-2019, consistent with our funda-
mental signals analysis. We use a recursive window approach and select the optimal hyper-parameters
using a cross-validation approach. Our initial estimation period is 1963-1986. The first 12 years is
the training period and the second 12 years is the validation period. As we roll forward, the train-
ing period expands while the validation period stays at 12 years. The top panel reports results for
equal-weighted portfolios. The bottom reports results for value-weighted portfolios. All returns are
expressed in percent per month.
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Appendix A: Grids of Hyper-Parameters for Cross Validation

BRT NN
# of iteration ∈ {100, 250, 500, 750, 1000}
learning rate ∈ {0.01, 0.05, 0.1}

L1 penalty λ1 ∈ {10−5, 10−3}
Learning Rate LR∈ {0.001, 0.01}
Batch Size = 10000
Epochs = 100
Patience = 5
Adam Para. = Default

This table shows the grids of hyper-parameters used in the cross validation of Boosted Regression Trees (BRT)
and Neural Networks (NN). We follow Gu, Kelly, and Xiu (2020) to select the grids of hyper-parameters.
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Appendix B: List of Accounting Variables

# Variable Description Missing Rate Start Year
1 ACCHG Accounting changes - cumulative effect 39.29% 1988
2 ACO Current assets other total 0.76% 1963
3 ACOX Current assets other sundry 2.20% 1963
4 ACT Current assets - total 2.13% 1963
5 AM Amortization of intangibles 33.03% 1965
6 AO Assets – other 0.06% 1963
7 AOLOCH Assets and liabilities other net change 38.36% 1988
8 AOX Assets – other - sundry 2.22% 1963
9 AP Accounts payable – trade 4.88% 1963
10 APALCH Accounts payable & accrued liabilities increase/decrease 53.14% 1988
11 AQC Acquisitions 12.98% 1972
12 AQI Acquisitions income contribution 32.50% 1975
13 AQS Acquisitions sales contribution 32.26% 1975
14 AT Assets – total 0.01% 1963
15 BAST Average short-term borrowing 74.28% 1978
16 CAPS Capital surplus/share premium reserve 2.08% 1963
17 CAPX Capital expenditure 2.18% 1963
18 CAPXV Capital expenditure PPE Schedule V 1.39% 1963
19 CEQ Common/ordinary equity - total 1.54% 1963
20 CEQL Common equity liquidation value 1.62% 1963
21 CEQT Common equity tangible 1.64% 1963
22 CH Cash 12.33% 1963
23 CHE Cash and short-term investments 0.72% 1963
24 CHECH Cash and cash equivalents increase/decrease 28.77% 1972
25 CLD2 Capitalized leases - due in 2nd year 46.55% 1985
26 CLD3 Capitalized leases - due in 3rdyear 46.44% 1985
27 CLD4 Capitalized leases - due in 4thyear 46.18% 1985
28 CLD5 Capitalized leases - due in 5thyear 46.15% 1985
29 COGS Cost of goods sold 0.09% 1963
30 CSTK Common/ordinary stock (capital) 1.96% 1963
31 CSTKCV Common stock-carrying value 28.31% 1963
32 CSTKE Common stock equivalents – dollar savings 0.06% 1963
33 DC Deferred charges 28.45% 1965
34 DCLO Debt capitalized lease obligations 10.08% 1965
35 DCOM Deferred compensation 72.02% 1980
36 DCPSTK Convertible debt and stock 2.85% 1963
37 DCVSR Debt senior convertible 9.89% 1970
38 DCVSUB Debt subordinated convertible 11.96% 1970
39 DCVT Debt – convertible 5.80% 1963
40 DD Debt debentures 10.55% 1965
41 DD1 Long-term debt due in one year 5.05% 1963
42 DD2 Debt Due in 2nd Year 23.27% 1974
43 DD3 Debt Due in 3rd Year 23.32% 1974
44 DD4 Debt Due in 4th Year 23.16% 1974
45 DD5 Debt Due in 5th Year 24.04% 1974
46 DFS Debt finance subsidiary 79.68% 1992
47 DFXA Depreciation of tangible fixed assets 65.07% 1970
48 DILADJ Dilution adjustment 62.54% 1994
49 DILAVX Dilution available excluding extraordinary items 62.54% 1994
50 DLC Debt in current liabilities - total 0.72% 1963
51 DLCCH Current debt changes 60.86% 1974
52 DLTIS Long-term debt issuance 10.50% 1972
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# Variable Description Missing Rate Start Year
53 DLTO Other long-term debt 9.96% 1965
54 DLTP Long-term debt tied to prime 38.66% 1975
55 DLTR Long-term debt reduction 9.84% 1972
56 DLTT Long-term debt - total 0.20% 1963
57 DM Debt mortgages &other secured 33.76% 1981
58 DN Debt notes 10.56% 1965
59 DO Income (loss) from discontinued operations 3.66% 1963
60 DONR Nonrecurring discontinued operations 71.10% 1994
61 DP Depreciation and amortization 0.24% 1963
62 DPACT Depreciation , depletion and amortization 0.44% 1963
63 DPC Depreciation and amortization (cash flow) 8.59% 1972
64 DPVIEB Depreciation ending balance (schedule VI) 19.34% 1970
65 DPVIO Depreciation other changes (schedule VI) 65.12% 1970
66 DPVIR Depreciation retirements (schedule VI) 65.14% 1970
67 DRC Deferred revenue current 73.42% 1994
68 DS Debt-subordinated 9.93% 1965
69 DUDD Debt unamortized debt discount and other 29.51% 1963
70 DV Cash dividends (cash flow) 8.55% 1972
71 DVC Dividends common/ordinary 0.11% 1963
72 DVP Dividends - preferred/preference 0.06% 1963
73 DVPA Preferred dividends in arrears 17.95% 1964
74 DVPIBB Depreciation beginning balance (schedule VI) 60.82% 1970
75 DVT Dividends – total 0.11% 1963
76 DXD2 Debt (excl capitalized leases) due in 2nd year 49.31% 1985
77 DXD3 Debt (excl capitalized leases) due in 3rd year 49.25% 1985
78 DXD4 Debt (excl capitalized leases) due in 4thyear 48.96% 1985
79 DXD5 Debt (excl capitalized leases) due in 5thyear 49.36% 1985
80 EBIT Earnings before interest and taxes 1.36% 1963
81 EBITDA Earnings before interest 0.21% 1963
82 ESOPCT ESOP obligation (common) - total 40.69% 1980
83 ESOPDLT ESOP debt - long term 49.09% 1990
84 ESOPT Preferred ESOP obligation - total 41.01% 1964
85 ESUB Equity in earnings -unconsolidated subsidiaries 12.33% 1963
86 ESUBC Equity in net loss earnings 22.05% 1972
87 EXRE Exchange rate effect 38.46% 1988
88 FATB Property, plant, and equipment buildings 51.33% 1985
89 FATC Property, plant and equipment construction in progress 47.36% 1985
90 FATE Property, plant, equipment and machinery equipment 53.32% 1985
91 FATL Property, plant, and equipment leases 57.58% 1985
92 FATN Property, plant, equipment and natural resources 47.37% 1985
93 FATO Property, plant, and equipment other 52.84% 1985
94 FATP Property, plant, equipment and land improvements 51.25% 1985
95 FIAO Financing activities other 38.35% 1988
96 FINCF Financing activities net cash flow 38.35% 1988
97 FOPO Funds from operations other 7.83% 1972
98 FOPOX Funds from operations - Other excl option tax benefit 76.37% 1992
99 FOPT Funds from operations total 69.42% 1972
100 FSRCO Sources of funds other 70.81% 1972
101 FSRCT Sources of funds total 71.27% 1972
102 FUSEO Uses of funds other 70.81% 1972
103 FUSET Uses of funds total 71.61% 1972
104 GDWL Goodwill 47.13% 1989
105 GP Gross profit (loss) 0.09% 1963
106 IB Income before extraordinary items 0.05% 1963
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# Variable Description Missing Rate Start Year
107 IBADJ IB adjusted for common stock equivalents 0.05% 1963
108 IBC Income before extraordinary items (cash flow) 7.82% 1972
109 IBCOM Income before extraordinary items available for common 0.05% 1963
110 ICAPT Invested capital – total 1.54% 1963
111 IDIT Interest and related income - total 42.18% 1965
112 INTAN Intangible assets – total 10.02% 1963
113 INTC Interest capitalized 16.78% 1963
114 INTPN Interest paid net 43.82% 1988
115 INVCH Inventory decrease (increase) 43.46% 1988
116 INVFG Inventories finished goods 41.28% 1970
117 INVO Inventories other 52.52% 1984
118 INVRM Inventories raw materials 40.27% 1969
119 INVT Inventories – total 1.43% 1963
120 INVWIP Inventories work in progress 43.69% 1970
121 ITCB Investment tax credit (balance sheet) 3.20% 1963
122 ITCI Investment tax credit (income account) 37.65% 1963
123 IVACO Investing activities other 38.35% 1988
124 IVAEQ Investment and advances – equity 9.07% 1963
125 IVAO Investment and advances other 7.07% 1963
126 IVCH Increase in investments 13.68% 1972
127 IVNCF Investing activities net cash flow 38.35% 1988
128 IVST Short-term investments – total 12.35% 1963
129 IVSTCH Short-term investments change 48.38% 1988
130 LCO Current liabilities other total 4.76% 1963
131 LCOX Current liabilities other sundry 6.10% 1963
132 LCOXDR Current liabilities-other-excl deferred revenue 72.40% 1994
133 LCT Current liabilities – total 1.69% 1963
134 LIFR LIFO reserve 22.04% 1976
135 LO Liabilities – other – total 0.72% 1963
136 LT Liabilities – total 0.50% 1963
137 MIB Minority interest (balance sheet) 6.37% 1963
138 MII Minority interest (income account) 10.24% 1963
139 MRC1 Rental commitments minimum 1styear 27.85% 1975
140 MRC2 Rental commitments minimum 2ndyear 28.34% 1975
141 MRC3 Rental commitments minimum 3rdyear 28.46% 1975
142 MRC4 Rental commitments minimum 4th year 28.61% 1975
143 MRC5 Rental commitments minimum 5th year 30.38% 1975
144 MRCT Rental commitments minimum 5 year total 29.51% 1975
145 MSA Marketable securities adjustment 18.18% 1976
146 NI Net income (loss) 0.06% 1963
147 NIADJ Net income adjusted for common stock equiv. 2.24% 1963
148 NIECI Net income effect capitalized interest 59.92% 1976
149 NOPI Non-operating income (expense) 0.10% 1963
150 NOPIO Non-operating income (expense) other 0.10% 1963
151 NP Notes payable short-term borrowings 0.80% 1963
152 OANCF Operating activities net cash flow 38.36% 1988
153 OB Order backlog 64.22% 1971
154 OIADP Operating income after depreciation 0.07% 1963
155 PI Pre-tax income 0.06% 1963
156 PIDOM Pretax income domestic 74.94% 1981
157 PIFO Pretax income foreign 75.36% 1981
158 PPEGT Property, plant, and equipment – total (gross) 0.45% 1963
159 PPENB Property, plant, and equipment buildings (net) 70.38% 1970
160 PPENC Property plant equipment construction in progress (net) 65.66% 1970
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# Variable Description Missing Rate Start Year
161 PPENLI Property plant equipment land and improvements (net) 70.26% 1970
162 PPENME Property plant equipment machinery and equipment (net) 69.73% 1970
163 PPENNR Property plant equipment natural resources (net) 69.31% 1970
164 PPENO Property plant and equipment other (net) 69.26% 1970
165 PPENT Property, plant, and equipment – total (net) 0.11% 1963
166 PPEVBB Property plant equipment beginning balance (schedule V) 57.03% 1963
167 PPEVEB Property, plant, and equipment ending balance 15.25% 1963
168 PPEVO Property, plant, and equipment other changes (schedule V) 62.50% 1963
169 PPEVR Property, plant and equipment retirements (schedule V) 62.50% 1963
170 PRSTKC Purchase of common and preferred stock 12.98% 1972
171 PSTK Preferred/preference stock (capital) – total 0.24% 1963
172 PSTKC Preferred stock convertible 4.96% 1963
173 PSTKL Preferred stock liquidating value 0.05% 1963
174 PSTKN Preferred/preference stock – non-redeemable 1.48% 1963
175 PSTKR Preferred/preference stock - redeemable 20.89% 1964
176 PSTKRV Preferred stock redemption value 0.06% 1963
177 RDIP In process R&D expense 65.68% 1994
178 RE Retained earnings 2.04% 1963
179 REA Retained earnings restatement 10.33% 1970
180 REAJO Retained earnings other adjustments 30.06% 1983
181 RECCH Accounts receivable decrease (increase) 41.58% 1988
182 RECCO Receivables – current – other 3.21% 1963
183 RECD Receivables – estimated doubtful 29.03% 1970
184 RECT Receivables – total 1.45% 1963
185 RECTA Retained earnings cumulative translation adjustment 30.39% 1983
186 RECTR Receivables – trade 17.96% 1967
187 REUNA Retained earnings unadjusted 29.89% 1983
188 SALE Sales/turnover (net) 0.05% 1963
189 SEQ Stockholders’ equity – total 2.24% 1963
190 SIV Sale of investments 16.24% 1972
191 SPI Special items 3.93% 1963
192 SPPE Sale of property 28.92% 1972
193 SPPIV Sale of property plant equipment investments gain (loss) 38.36% 1988
194 SSTK Sale of common and preferred stock 9.55% 1972
195 TLCF Tax loss carry forward 23.48% 1963
196 TSTK Treasury stock – total (all capital) 16.37% 1970
197 TSTKC Treasury stock – common 26.38% 1974
198 TSTKP Treasury stock – preferred 25.51% 1963
199 TXACH Income taxes accrued increase/decrease 56.69% 1988
200 TXBCO Excess tax benefit stock options -cash flow 76.43% 1992
201 TXC Income tax – current 16.78% 1963
202 TXDB Deferred taxes (balance sheet) 3.34% 1963
203 TXDBA Deferred tax asset - long term 73.84% 1993
204 TXDBCA Deferred tax asset - current 73.11% 1994
205 TXDBCL Deferred tax liability - current 74.46% 1994
206 TXDC Deferred taxes (cash flow) 10.38% 1972
207 TXDFED Deferred taxes-federal 48.37% 1985
208 TXDFO Deferred taxes-foreign 45.98% 1985
209 TXDI Income tax – deferred 6.99% 1963
210 TXDITC Deferred taxes and investment tax credit 3.34% 1963
211 TXDS Deferred taxes-state 48.91% 1985
212 TXFED Income tax federal 16.78% 1963
213 TXFO Income tax foreign 19.02% 1970
214 TXNDB Net deferred tax asset (liab) - total 69.95% 1994
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# Variable Description Missing Rate Start Year
215 TXNDBA Net deferred tax asset 72.66% 1994
216 TXNDBL Net deferred tax liability 72.67% 1994
217 TXNDBR Deferred tax residual 72.05% 1994
218 TXO Income taxes - other 33.11% 1963
219 TXP Income tax payable 5.93% 1963
220 TXPD Income taxes paid 45.36% 1988
221 TXR Income tax refund 10.40% 1963
222 TXS Income tax state 17.76% 1963
223 TXT Income tax total 0.06% 1963
224 TXW Excise taxes 24.39% 1976
225 WCAP Working capital (balance sheet) 2.15% 1963
226 WCAPC Working capital change other increase/decrease 72.51% 1972
227 WCAPCH Working capital change total 74.62% 1972
228 XACC Accrued expenses 19.16% 1963
229 XAD Advertising expense 64.98% 1963
230 XDEPL Depletion expense (schedule VI) 68.80% 1970
231 XI Extraordinary items 1.60% 1963
232 XIDO Extra. items and discontinued operations 0.06% 1963
233 XIDOC Extra. items and disc. operations (cash flow) 9.44% 1972
234 XINT Interest and related expenses – total 5.05% 1963
235 XOPR Operating expenses – total 0.09% 1963
236 XPP Prepaid expenses 43.96% 1963
237 XPR Pension and retirement expense 25.03% 1963
238 XRD Research and development expense 47.01% 1963
239 XRENT Rental expense 14.34% 1963
240 XSGA Selling, general and administrative expense 12.13% 1963

This table lists the 240 accounting variables used in this study and their descriptions. Our sample pe-
riod is 1963-2019. We begin with all accounting variables on the balance sheet, income statement, and
cash flow statement included in the annual Compustat database. We exclude all variables with fewer
than 20 years of data or fewer than 1,000 firms with non-missing data on average per year. We exclude
per-share-based variables such as book value per share and earnings per share. We remove LSE (to-
tal liabilities and equity), REVT (total revenue), OIBDP (operating income before depreciation), and
XDP (depreciation expense) because they are identical to TA (total assets), SALE (total sale), EBITDA
(earnings before interest) and DFXA (depreciation of tangible fixed assets) respectively. Please refer to
Yan and Zheng (2017) for more details.
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Appendix D. Relative Influence Measures

One criticism of machine learning algorithms is that they are “Black Boxes” that do not provide

a lot of intuition to the researcher and the reader. This criticism hardly applies to BRTs that feature

very useful and intuitive visualization tools. The first commonly used measure is referred to as the

“relative influence” measure. Consider the reduction in the empirical error every time one of the

covariates xl,· is used to split the tree. Summing the reductions in empirical errors (or improvements

in fit) across the nodes in the tree gives a measure of the variable’s influence (Breiman, Friedman,

Stone, and Olshen, 1984):

Il (T ) =
J∑

j=2

∆e (j)2 I (x (j) = l) ,

where ∆e (j)2 = T−1
∑T

t=1

(
et (j − 1)2 − et (j)

2
)

is the reduction in the squared empirical error at

the jth node and x (j) is the regressor chosen at this node, so I (x (j) = l) equals 1 if regressor l is

chosen, and 0 otherwise. The sum is computed across all observations, t = 1, . . . , T , and over the

J − 1 internal nodes of the tree.

The rationale for this measure is that at each node, one of the regressors gets selected to partition

the sample space into two sub-states. The particular regressor at node j achieves the greatest reduction

in the empirical risk of the model fitted up to node j − 1. The importance of each regressor, xl,·, is

the sum of the reductions in the empirical errors computed over all internal nodes for which it was

chosen as the splitting variable. If a regressor never gets chosen to conduct the splits, its influence

is zero. Conversely, the more frequently a regressor is used for splitting, and the bigger its effect on

reducing the model’s empirical risk, the larger its influence.

This measure of influence can be generalized by averaging over the number of boosting iterations,

B, which generally provides a more reliable measure of influence:

Īl =
1

B

B∑

b=1

Il (Tb) .

This is best interpreted as a measure of relative influence that can be compared across regressors.
We therefore report the following measure of relative influence, RI l, which sums to 1:

RI l = Īl/
L∑

l=1

Īl.

The figure below shows the relative influence of the top 25 signals in the baseline BRT model
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estimated in the paper. We first compute the signals’ relative influence in each year of the test period,

1987-2019, and average their values across all test years. Note that the relative importance measure

across all signals sums to one every year. We then rank and plot the signals according to their average

relative influence. The Y-axis reports the 25 most important signals, while the x-axis presents each

signal’s average relative influence measure.
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The figure below shows the relative influence of the top 25 signals in the baseline BRT model on

past return signals. We first compute the signals’ relative influence in each month of the test period,

1987-2019, and average their values across all test months. Note that the relative importance measure

across all signals sums to one every month. We then rank and plot the signals according to their

average relative influence. The Y-axis reports the 25 most important signals in terms of lags, while

the x-axis presents each signal’s average relative influence measure.
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(a) In-Sample and Out-of-Sample R2
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Figure IA.1: In- and Out-of-Sample Return Predictability
This figure shows the in- and out-of-sample BRT return predictability. Panel (a) plots the 12-month
moving averages of in- and out-of-sample R2. In-sample (i) denotes the in-sample results with opti-
mal hyper-parameters chosen over the training period 1962 - 1986. For In-sample (ii), the optimal
hyper-parameters are chosen using leave-one-year-out cross-validation over the test period 1987-2019,
following Martin and Nagel (2022). Panel (b) shows the in- and out-of-sample returns of a long-short
portfolio strategy based on BRT forecasts.
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Appendix IA.5: Predictability of Stock Returns across Different Economic and Market Conditions

Panel A. Sentiment
Equal Weight Value Weight

High Low Diff High Low Diff
1.18 0.79 0.39 0.35 0.52 -0.17

(4.87) (3.45) (1.17) (0.90) (1.90) (-0.36)

Panel B. VIX
Equal Weight Value Weight

High Low Diff High Low Diff
0.8 0.96 -0.16 0.15 0.57 -0.42

(2.74) (5.25) (-0.47) (0.34) (2.28) (-0.85)

Panel C. Liquidity
Equal Weight Value Weight

High Low Diff High Low Diff
0.96 0.94 0.02 0.62 0.18 0.44

(4.64) (3.63) (0.05) (2.18) (0.46) (-0.93)

Panel D. Business Cycle
Equal Weight Value Weight

Recession Expansion Diff Recession Expansion Diff
1.27 0.92 0.35 0.87 0.35 0.52

(1.75) (5.51) (0.47) (0.63) (1.58) (0.37)

Panel E. Past Market Returns
Equal Weight Value Weight

UP DOWN Diff UP DOWN Diff
1.24 0.67 0.57 0.79 0.00 0.79

(4.68) (3.35) (1.73) (2.31) (0.01) (1.67)

Panel F. Calendar Subperiods
Equal Weight Value Weight

1987-2003 2003-2019 Diff 1987-2003 2003-2019 Diff
1.22 0.69 0.53 0.34 0.46 -0.12

(4.32) (3.94) (1.58) (0.82) (1.87) (-0.26)

This table reports the average long-short portfolio returns from the BRT model across subperiods
sorted by economic and market conditions. For sentiment, VIX, liquidity, and past market returns,
we split the sample period into two subperiods based on the median value of the conditioning vari-
able. We then compute the performance of the BRT model across the different subperiods. In Panel
D, we split the sample into recession and expansion based on the NBER recession indicator. In Panel
F, we split the sample period into 1987-2003 and 2003-2019. In all cases, we report the performance
of the long-short BRT portfolio in each subperiod. We also report whether the difference in long-
short performance across different subperiods is statistically significant. All returns are expressed in
percent per month.
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