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Abstract

Recent studies document strong performance for machine-learning-based investment strategies.
These strategies use anomaly variables discovered ex-post as predictors of stock returns and cannot be
implemented in real time. We construct real-time machine learning strategies based on a “universe” of
fundamental signals. While positive and significant, the out-of-sample performance of these strategies
is significantly weaker than those documented by prior studies. We find qualitatively similar results
when examining a “universe” of past-return-based signals. Our results offer a more tempered view of

the economic gains associated with machine learning strategies relative to prior literature.
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1 Introduction

Machine learning methods have received considerable attention in the recent asset pricing literature,
particularly in the area of return prediction (see, e.g., Chen, Pelger, and Zhu (2022), Freyberger,
Neuhierl, and Weber (2020), Gu, Kelly, and Xiu (2020) and Leippold, Wang, and Zhou (2022)). The
general conclusions of the existing studies are remarkably similar—machine learning models are supe-
rior to traditional models in predicting the cross-section of stock returns. Given the inherent focus of
machine learning methods on out-of-sample prediction, these studies leave readers with the impression
that machine learning methods routinely lead to large improvements in investment performance. In-
deed, a common theme among many existing studies is constructing long-short investment strategies
based on machine learning forecasts and demonstrating that these strategies are highly profitable.

While prior studies have clearly established the potential for large economic gains to investors using
machine learning forecasts, an important issue that has yet to be fully addressed in the literature is the
real-time implementability of machine learning strategies. Specifically, existing studies use published
anomaly variables as predictors of stock returns and implicitly assume that they are known to investors
at the beginning of the training period, even though most anomalies are discovered years or decades
later.! While this approach is very natural if the objective is to measure risk premium or estimate the
stochastic discount factor, in which case we can take an econometrician’s perspective and analyze data
ex-post, such an approach raises the issue of whether the resulting machine learning strategies could
have been implemented by real-time investors. Take the asset growth anomaly of Cooper, Gulen, and
Schill (2008) as an example. It is unlikely that investors would have been able to single out asset growth
as a stock return predictor before that research was published in the mid-2000s. Assuming otherwise
would lead to a look-ahead bias. Moreover, published anomalies tend to exhibit strong in-sample
performance partly because of the publication bias (Harvey, Liu, and Zhu, 2016). Having hindsight of
this strong performance can lead to an overly optimistic assessment of past trading decisions; hence,
the economic gains from using machine learning forecasts documented by prior studies are potentially
overstated for real-time investors.

In this paper, we examine machine learning strategies based on a “universe” of over 18,000 funda-

mental signals. Because these signals are constructed from financial statement variables using permu-

1There are exceptions. For example, Kozak, Nagel, and Santosh (2020) use shrinkage and selection method to
construct a stochastic discount factor (SDF) from a comprehensive set of 70 financial ratios compiled by WRDS.
Avramov, Kaplanski, and Subrahmanyam (2022) use machine learning methods to construct a fundamental index from
105 signals that are based on deviations of accounting variables from their recent averages.



tational arguments (Yan and Zheng, 2017), our strategies are implementable in real-time. Moreover,
examining a universe of fundamental signals, rather than selecting a subset of them based on whether
they have been published in academic journals, allows us to side-step the issue of data mining and
look-ahead bias. As a consequence, our strategies should more accurately reflect the economic benefit
of using machine learning forecasts for real-time investors.

We focus on fundamental signals for several reasons. First, fundamental analysis dates back at
least to Graham and Dodd (1934), so it is natural to expect investors to consider fundamental signals
as a potential class of return predictors (i.e., no look-ahead bias). Second, financial economists have
long emphasized the importance of economic intuition behind predictors of expected returns (Fama
and French, 1996; Cochrane, 2011), especially in a machine learning environment (Arnott, Harvey,
and Markowitz, 2019). Fundamental signals are inherently related to firm cash flows and valuations
and, therefore, have stronger economic foundations than most other classes of predictors. Third, one
can construct a “universe” of fundamental signals using permutational arguments (Yan and Zheng,
2017). This is important because real-time investors have no way of knowing which signals turn out
to be significant ex-post, so they have to learn from the universe of available signals.

The primary machine learning method we use is Boosted Regression Trees (BRT). We focus on BRT
for several reasons. First, previous studies have shown that BRT exhibit strong predictive performance
in finance applications. Gu, Kelly, and Xiu (2020), for example, show that BRT and neural networks
are the two best-performing machine learning methods in predicting stock returns. Second, BRT are
ideally suited for handling large, high-dimensional data sets because of their computational efficiency.
This is important for us because our predictor set, which contains more than 18,000 signals, is much
larger than those examined by previous studies. Third, BRT are robust to missing values, outliers,
and the addition of irrelevant input variables. Finally, BRT are not “black boxes” like many other
machine learning methods, and they are instead known for their interpretability.

We follow Gu, Kelly, and Xiu (2020) and partition our sample period 1963-2019 into a training
period, a cross-validation period, and an out-of-sample test period. We form long-short portfolios
based on machine learning predicted returns, i.e., buying stocks with high predicted returns and
shorting stocks with low predicted returns. We find that the equal-weighted long-short portfolio
generates an average return of 0.95% per month (#-statistic=6.63) and an annualized Sharpe ratio
of 1.02 during the out-of-sample period 1987-2019. The performance of the value-weighted long-

short portfolio is much weaker, earning an average return of 0.40% per month (¢-statistic=2.34) and



exhibiting a Sharpe ratio of 0.30.

The long-short returns and Sharpe ratios for our machine learning strategies, although statistically
significant, are considerably lower than those documented by prior studies. Gu, Kelly, and Xiu (2020),
for example, show that the long-short portfolios formed based on neural network forecasts earn an
average return of 3.27% per month and an annualized Sharpe ratio of 2.45 in equal-weighted portfolios
and an average return of 2.12% per month, and a Sharpe ratio of 1.35 in value-weighted portfolios.
Similarly, Chen, Pelger, and Zhu (2022) and Freyberger, Neuhierl, and Weber (2020) report that the
hedge portfolios constructed based on their models deliver an out-of-sample Sharpe ratio of 2.6 and
2.75, respectively. Thus, compared to the previous literature, our results indicate that the economic
gains to real-time investors from using machine learning forecasts are much more modest.

Institutional investors are more likely to have the resources and sophistication to use machine
learning methods. Previous studies (e.g., Gompers and Metrick (2001)) have shown that institutional
investors prefer large, liquid stocks because they are more investable. To evaluate whether our machine
learning strategies are profitable among large stocks, we repeat our analysis for subsamples of stocks
sorted by firm size. We find that the out-of-sample performance of our machine learning strategies
is statistically significant among small stocks but only marginally significant and, in some cases,
insignificant among large stocks. The weak evidence of out-of-sample predictability among large stocks
suggests that the economic benefit of using machine learning forecasts may be even more limited for
institutional investors.

The relatively weak performance of our machine-learning strategies is not specific to BRT. We find
even weaker evidence of out-of-sample predictability using neural network (NN) forecasts. Specifically,
while the long-short returns are generally significant in equal-weighted portfolios, they are insignificant
in value-weighted portfolios. Consistent with Gu, Kelly, and Xiu (2020), we find that shallow learning
performs better than deep learning in neural networks.

Our analyses so far have focused on fundamental signals. The main reason for this focus is that we
can construct a “universe” of fundamental signals (Yan and Zheng, 2017). Past return-based signals
are another class of predictors for which we can construct an “exhaustive” list of signals. In particular,
we follow Martin and Nagel (2022) and use the past 120 months (excluding the most recent month)
of stock returns. As in our analysis of fundamental signals, we continue to use BRT as the primary
machine-learning method. We find that the machine-learning strategy based on past-return signals

earns an average return of 1.38% per month (¢-statistic=4.93) and exhibits an annualized Sharpe



ratio of 1.04 in equal-weighted portfolios. The performance of value-weighted portfolios is weaker; the
average long-short return is 0.78% per month (¢-statistic=2.41), while the Sharpe ratio is 0.46. The
results based on neural network forecasts are qualitatively similar, with shallow networks performing
similarly to BRT and deep networks performing significantly worse than BRT. Risk-adjusted returns
indicate that the performance is significantly reduced when we control for the momentum factor.
Overall, our analyses based on past-return signals paint a similar picture to that based on fundamental
signals. That is, the performance of our machine learning strategies based on past-return signals is
positive and significant but economically and statistically weaker than those reported by the prior
literature.

One might be concerned that the relatively weak performance of our machine learning strategies
is perhaps because our ML implementation is not as powerful as those employed by previous studies.
To mitigate this concern, we replicate our machine learning analyses—both Boosted Regression Trees
(BRT) and Neural Networks (NN)—on samples of published anomalies. We use both the Chen and
Zimmermann (2022, CZ) covariates as well as the set of anomalies included in Green, Hand, and
Zhang (2017, GHZ) and used by Gu, Kelly, and Xiu (2020). For the GHZ sample, we find that both
BRT and shallow NNs deliver an out-of-sample long-short return in excess of 3.5% per month for
equally weighted portfolios and a Sharpe Ratio between 2.35 and 2.95. These numbers are in line
with the results in Gu, Kelly, and Xiu (2020) and substantially stronger than what we document for
our “unmined” universe of predictors. The results that use the CZ sample of anomalies are even more
impressive. For example, BRTs generate an equal-weighted long-short return of 5.18% per month and
a Sharpe Ratio of 3.68. Taken together, these results indicate that our ML implementation is capable
of generating rather strong performance when we use published predictors. As stated earlier, machine
learning strategies based on subsequently discovered anomalies cannot be implemented in real time,
and their performance is likely inflated due to a look-ahead bias. Nevertheless, the fact that we are
able to replicate the strong performance of previous studies when we use published predictors indicates
that our ML implementation is not the reason why the performance of our real-time implementable
ML strategies is relatively weak.

Another potential explanation for the performance difference between our machine learning strate-
gies and those employed by existing studies is the omission of short-term reversal from our predictor
set. We perform two tests to evaluate this possibility. First, we remove short-term reversal from sam-

ples of published factors and construct machine learning strategies based on the remaining published



factors. We again consider the samples of published anomalies from Green, Hand, and Zhang (2017)
and Chen and Zimmermann (2022). We find that excluding short-term reversal reduces the machine
learning strategy performance. However, the strong performance of the machine learning portfolios
remains intact even after excluding short-term reversal from the samples of published factors. For ex-
ample, excluding short-term reversal from the GHZ anomalies reduces the equal-weighted long-short
return for the BRT strategy from 3.57% (t-stat=8.91) to 3.04% (¢-stat=9.11). The corresponding
numbers for the CZ anomalies are 5.18% (t-stat=9.91) and 4.87% (t-stat=10.05). The magnitude of
the performance reduction is modest, and the long-short returns of these machine learning strategies,
even after excluding short-term reversals, remain considerably higher than those based on our universe
of fundamental signals.

In the second test, we add short-term reversal to our set of past-return signals and repeat our
analysis. The results reveal a modest increase in the machine learning performance after short-
reversal is added to the predictor set. For example, the equal-weighted long-short return for the BRT
strategy is 1.38% (t-stat=4.93) without short-term reversal and is 1.81% (t-stat=6.40) with short-term
reversal. The value-weighted long-short returns increase from 0.78% (t-stat=2.41) without short-term
reversal to 0.98% (t-stat=3.14) with short-term reversal. Overall, we find that the long-short returns
are modestly increased after including short-term reversal; however, they remain significantly lower
than those for the machine learning strategies based on the GHZ and CZ samples of published factors.
These results suggest that short-term reversal alone cannot explain the performance difference between
our ML strategies and those based on published factors.

We focus on the gross, i.e., the before-trading cost performance of our machine learning strategies
in this paper to facilitate comparison with prior literature (e.g., Gu, Kelly, and Xiu (2020); Freyberger,
Neuhierl, and Weber (2020); Chen, Pelger, and Zhu (2022)). There is, however, growing attention
to trading costs in both the anomaly literature and the machine learning literature (e.g., Novy-Marx
and Velikov (2016); Chen and Velikov (2022); Jensen, Kelly, Malamud, and Pedersen (2022)). Next,
we examine the after-trading-cost performance of our machine-learning strategies. We use Chen and
Velikov (2022)’s low-frequency effective spreads as our trading cost measure and follow their approach
to calculate the net returns of long-short strategies. We find that the net returns to our BRT strategies
based on fundamental signals are positive: 0.73% per month for equal-weighted portfolios and 0.25%
for value-weighted portfolios. In contrast, the net returns to strategies based on past-return signals

are consistently negative. For example, the net return for BRT strategies is -0.97% per month for



equal-weighted portfolios and -0.29% for value-weighted portfolios. Adding short-term reversal to the
predictor set improves the gross returns, but the net returns remain negative.

We perform a number of robustness tests and additional analyses. We repeat our analysis using a
rolling-window approach instead of a recursive one. If the relations between fundamental signals and
future stock returns are unstable over time, then the rolling-window approach should perform better.
Contrary to this argument, we find that our machine-learning strategies perform slightly worse under
the rolling-window approach than under the recursive-window approach.

One might argue that the modest performance of our machine-learning strategies is due to our
large universe of fundamental signals. In particular, if most of these signals are uninformative about
future stock returns, machine-learning strategies based on our universe could be sub-optimal. As
noted earlier, BRTs are robust to the addition of irrelevant predictor variables, so this is not a big
concern for us. Nevertheless, to examine whether the performance of our machine learning strategies
is hampered by the large size of our predictor set, we construct various subsets of our universe based
on the prominence of the underlying accounting variables. Overall, we find no evidence that machine
learning strategies based on smaller universes of fundamental signals perform significantly better.

We also compare the in-sample and out-of-sample performance of our machine-learning strategies.
This analysis is motivated by Martin and Nagel (2022), who demonstrate that, in the age of Big
Data, when investors face a high-dimensional prediction problem, there should be a substantial wedge
between in-sample and out-of-sample predictability. Our results are consistent with this prediction.
We find that, in contrast to the modest out-of-sample predictability, our fundamental signals exhibit
strong in-sample predictability.

Our paper builds on and contributes to the recent literature employing machine learning meth-
ods in empirical asset pricing. Gu, Kelly, and Xiu (2020) use machine learning methods to measure
risk premium and show that machine learning models, particularly trees and neural networks, sig-
nificantly outperform linear regression models in predicting stock returns. Chen, Pelger, and Zhu
(2022) estimate the SDF using deep neural networks and show that their model outperforms all other
benchmark models. Freyberger, Neuhierl, and Weber (2020) use the adaptive group LASSO for model
selection and show that their model exhibits superior out-of-sample performance. Kozak, Nagel, and
Santosh (2020) use shrinkage and selection methods to construct an SDF that summarizes the joint

explanatory power of a large cross-section of return predictors.? These studies have established the

2For additional studies that use machine learning methods in asset pricing, please also see, e.g., Rapach, Strauss, and
Zhou (2013), Chinco, Clark-Joseph, and Ye (2019), Feng, Polson, and Xu (2020), Bryzgalova, Pelger, and Zhu (2020),



potential for large economic gains to investors using machine learning strategies. We complement the
existing studies by taking the perspective of real-time investors. Specifically, we construct real-time-
implementable machine learning strategies and show that they are significantly less profitable than
those considered by prior literature.

Our paper is closely related to Avramov, Kaplanski, and Subrahmanyam (2022), who use machine
learning methods to construct a fundamental index from 105 signals based on deviations of accounting
variables from their recent averages. They show that this fundamental deviation index significantly
predicts future stock returns. Our paper is also related to several earlier studies (Ou and Penman,
1989; Holthausen and Larcker, 1992; Haugen and Baker, 1996) that use machine leaning-like methods
to predict future stock returns. Ou and Penman (1989) use a comprehensive set of accounting ratios
to predict future unexpected earnings and then form trading strategies based on the predicted sign of
future unexpected earnings. Holthausen and Larcker (1992) use the accounting ratios from Ou and
Penman to directly predict future stock returns. Haugen and Baker (1996) examine the predictive
ability of a comprehensive set of cross-sectional return predictors in the U.S. and globally.

Our paper is also related to Avramov, Cheng, and Metzker (2023), who show that much of the prof-
itability of machine learning-based investment strategies is derived from difficult-to-arbitrage stocks or
during periods when limits-to-arbitrage are elevated. Our finding that the out-of-sample predictability
is significantly weaker among large stocks is consistent with Avramov, Cheng, and Metzker (2023).
Limits-to-arbitrage, however, is not our primary focus. Our main argument is that machine learning
strategies that use subsequently discovered anomaly variables as predictors, including those considered
by Avramov, Cheng, and Metzker (2023), may not be implementable in real-time.

Finally, our paper is related to Arnott, Harvey, and Markowitz (2019) and Israel, Kelly, and
Moskowitz (2020), who caution that machine learning methods may not work as well in finance as in
some other disciplines. In particular, machine learning methods face three significant challenges in
finance applications: the lack of data (on the time series dimension), the low signal-to-noise ratio, and
the adaptive nature of financial markets. The modest performance of our real-time machine learning
strategies could be a manifestation of these challenges faced by market professionals and investors.

The rest of our paper proceeds as follows. Section 2 describes our data, sample, and methods.

Section 3 presents our main empirical results. Section 4 presents the results for additional analyses

Bianchi, Biichner, and Tamoni (2021), Dong, Li, Rapach, and Zhou (2022), Leippold, Wang, and Zhou (2022), Kelly
and Xiu (2023), Geertsema and Lu (2023), Kaniel, Lin, Pelger, and Van Nieuwerburgh (2023) and Bali, Beckmeyer,
Morke, and Weigert (2023).



and robustness tests. Section 5 concludes.

2 Data, Sample, and Methods

This section describes the stock sample and associated fundamental signals we employ in our main
analysis. We then describe the cross-sectional prediction problem underlying the portfolio strategies
we generate and the main empirical method we use—Boosted Regression Trees (BRT). Third, we
describe how we implement our machine learning strategy. Finally, we provide a discussion of the

distinction between look-ahead bias and data-mining bias.

2.1 Stock Sample and Associated Fundamental Signals

We obtain monthly stock returns, share price, SIC code, and shares outstanding from the Center
for Research in Security Prices (CRSP) and annual accounting data from Compustat. Our sample
consists of the NYSE, AMEX, and NASDAQ common stocks (with a CRSP share code of 10 or 11)
with the necessary data to construct fundamental signals and compute subsequent stock returns. We
exclude financial stocks, i.e., those with a one-digit SIC code of 6. We also remove stocks with a share
price lower than $1. To mitigate backfilling biases, we require that a firm be listed on Compustat for
two years before it is included in our sample (Fama and French, 1993). We obtain Fama and French
(1996, 2015) factors and the momentum factor from Kenneth French’s website and Hou, Xue, and
Zhang (2015) g-factors from Lu Zhang’s website.> Our sample spans from July 1963 to June 2019,
and our sample consists of 15,035 stocks.

We construct the universe of fundamental signals for our sample of stocks following Yan and
Zheng (2017).* We start with 240 accounting variables (listed in Appendix B) and compute, for each
variable, a total of 76 signals (listed in Appendix C). These signals are obtained by taking the original
accounting variables and transforming them by computing changes, ratios, and other potentially
economically meaningful transformations. The final number of fundamental signals we include in our
analysis is 18,113, which is slightly smaller than 18,240 (240 x 76) because not all combinations of

the accounting variables result in meaningful signals, and some of the combinations are redundant.

3Kenneth French’s data library is located at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html. The g-factors can be downloaded from http://global-q.org/index.html.

4To minimize our discretion, we use a pre-existing universe of fundamental signals instead of constructing one
specifically for this study. Chordia, Goyal, and Saretto (2020) extend Yan and Zheng (2017) and construct a universe
of over 2 million fundamental signals. We choose not to use this universe because real-time investors are unlikely to
have the computing power to evaluate these many predictive variables in a machine learning context.



For brevity, we refer the readers to Yan and Zheng (2017) for complete details regarding selecting

accounting variables and constructing fundamental signals.

2.2 Methodology

2.2.1 Prediction Equation. We predict the cross-section of stock returns using the following

specification:

Rity1 = f(%it]0) + €11 (1)

where R; ;11 denotes annual excess return for stock ¢ from July of year ¢ to June of year ¢t + 1, x;+
denotes a vector of variables used to predict the cross section of returns, and 6 denotes the parameters
for the prediction function f. Stocks are indexed asi =1,..., N and years are indexed by t = 1,...,T.

The vector of predictive variables includes the 18,113 fundamental signals described earlier. To
make sure the accounting information is publicly available to investors, we follow Fama and French
(1992) and pair accounting variables in year ¢t — 1 with stock returns from July of year ¢ to June of
year t + 1. We follow Gu, Kelly, and Xiu (2020) and transform all fundamental signals as follows.
We first rank all non-missing fundamental signals each year and then scale their ranks to the interval
[—1,+1]. By construction, the cross-sectional median of the transformed fundamental signals is zero.

We predict annual excess returns for two reasons. First, our fundamental signals are constructed
from annual financial statements and are updated annually. Second, the number of signals consid-
ered in our study is substantially larger than those in prior studies. Predicting annual returns is

computationally more efficient than predicting monthly returns.®

2.2.2 Machine Learning Methods vs Linear Regressions. Traditionally, it was common in
the literature to assume linearity of the f function and estimate Equation (1) using linear regression
(LR) methods. More recently, the finance literature has instead started adopting more advanced
Machine Learning (ML) methods.

One may expect that ML methods should have an advantage compared to linear regression methods
because they feature 1) variable selection, 2) model combination, and 3) regularization/shrinkage,
which allow them to handle large sets of conditioning information and stabilize their predictions by

making them less sensitive to outliers.

5We conduct most of our empirical analyses on a high-performance cluster of 14 computing nodes, each of which is
equipped with 128GB of RAM.



ML methods also allow to capture nonlinearities in the relations between the target variable and
the regressors. When viewed through the lenses of the bias-variance trade-off, including nonlinearities
allows for a smaller bias at the cost of a higher variance which positively relates to the instability of the
predictions. In fact, a growing field in computer science, referred to as “adversarial machine learning,”
shows that even very small perturbations of the predictor variables can result in large changes in ML
predictions.®

Similar effects could arise naturally in finance, where the data-generating process relating regres-
sands and regressors constantly evolves. As profitable strategies are arbitraged away by smart money
in a Shumpeterian creative destruction cycle, ML methods could potentially overfit certain temporary
patterns that exist only in certain periods. This is particularly true for ML models with thousands
(millions or even billions) of parameters that have been trained to capture deep, non-linear interac-
tions because such a process makes them less adaptable to changes in the underlying dynamics of
the data. These issues are further complicated by the fact that financial datasets are relatively small
compared to those used in other fields, and financial research often faces weak signal-to-noise ratios
(Kelly and Xiu, 2023). In these contexts, simpler models, like linear regression, could be more robust
to changes in the data-generating process and deliver a more robust performance out-of-sample.

An important question is whether we should expect the advantages and disadvantages of ML
models compared to LR models to vary depending on whether the researchers use “unmined” versus
“known” predictors in their analysis. The theoretical literature does not provide a definitive answer
to this question. Intuitively, on the one hand, we can expect ML methods to have a greater advantage
compared to LR methods in the “unmined” predictor setting than in the “known” predictor setting
because they feature regularization and variable selection. On the other hand, ML may have a smaller
advantage relative to LR among “unmined” predictors because nonlinearities and variable interactions
may be less important in higher-dimensional settings, and ML methods may be less robust to time
variations in the relation between regressand and regressors. We leave an in-depth analysis of these
theoretical and empirical issues to further research, and, in this work, we limit ourselves to highlighting
that, while the majority of the literature shows tremendous promise for ML methods in finance, some

of the results documented in the literature should be interpreted cautiously.

bsee https://towardsdatascience.com/breaking-neural-networks-with-adversarial-attacks-f4290a9a45aa for

an introduction to the topic and additional details.

10



2.2.3 Boosted Regression Trees. Our baseline specification includes 18, 113 fundamental signals.
We choose the “off-the-shelf” machine learning tool called Boosted Regress Trees (BRT), in particular,
the LightGBM implementation (Ke, Meng, Finley, Wang, Chen, Ma, Ye, and Liu, 2017) for our
baseline analysis.

We choose BRT as our primary machine learning method for several reasons. First, BRT routinely
rank among the very best machine learning algorithms in both finance and non-finance applications.”
Second, BRT can handle large data sets with high dimensionality without overfitting because they
simultaneously perform subsampling, model combination, and shrinkage. Third, BRT are robust to
missing values and outliers (Hastie, Tibshirani, and Friedman, 2009). In particular, BRT are in-
variant under all monotone transformations of the individual input variables, making the forecasts
generated robust to extreme values. Fourth, BRT are robust to the addition of irrelevant input vari-
ables (Friedman, 2001; Hastie, Tibshirani, and Friedman, 2009), because the underlying Classification
and Regression Trees (CART) algorithm is designed to perform variable selection. Finally, because
BRT are rooted in the CART framework, they possess good interpretability. For example, BRT return
the rank and relative importance of all the potential regressors available, known as relative influence

measures.® This feature distinguishes BRT from harder-to-interpret methods such as neural networks.

Regression Trees

A regression tree is built through a process known as binary recursive partitioning, which is
an iterative process that splits the data into partitions or branches. Suppose we have P potential
predictor (“state”) variables and a single dependent variable over T' observations, i.e., (2, yry1) for
t =1,2,...,T, with &, = (241, 242,...,2¢p). Fitting a regression tree requires deciding (i) which
predictor variables to use to split the sample space and (ii) which split points to use. The regression
trees we use employ recursive binary partitions, so the fit of a regression tree can be written as an

additive model:
J

flo)=> cjIl{z S},

j=1
where Sj,j =1,...,J are the regions we split the space spanned by the predictor variables into, I{}
is an indicator variable, and c¢; is the constant used to model the dependent variable in each region.

If the L? norm criterion function is adopted, the optimal constant is é; = mean (yi4+1|z¢ € Sj).

"See a list of Machine Learning Challenge Winning Solutions on the Light GBM’s website at https://github.com/
microsoft/LightGBM/tree/master/examples.

8To conserve space, we provide a description of the relative influence measures in Appendix D. We also implement
the relative influence measure on our data and report the results in Appendix D.
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The globally optimal splitting point is difficult to determine, particularly in cases where the number
of state variables is large. Hence, we use a sequential greedy algorithm. Using the full set of data, the

algorithm considers a splitting variable p and a split point s so as to construct half-planes,
S1(ps) ={X[Xp < s} and Sz (p,s)={X[X, > s},

that minimize the sum of squared residuals:

min |min Z (Y41 — 01)2 —I-Héin Z (Y41 — 02)2

b,s C1 2
z+€S51(p,s) x1€S2(p,s)

For a given choice of p and s, the fitted values, ¢; and ¢, are

T
1
/C\l — yt+1l{$t S Sl (pa 5)}7
Z?:l I{xt € 51 (ps S) tz:;
1 T
/0\2 — ZytJrlI{‘rt € 5y (p,S)}

Z?:l I{z, € S2(p,s)} i3

The best splitting pair (p, s) in the first iteration can be determined by searching through each of
the predictor variables, p = 1,..., P. Given the best partition from the first step, the data is then
partitioned into two additional states, and the splitting process is repeated for each of the subsequent
partitions. Predictor variables that are never used to split the sample space do not influence the fit
of the model, so the choice of splitting variable effectively performs variable selection.

Regression trees are ideally suited for handling high-dimensional data sets, incorporating multi-
way interactions among predictors, and capturing non-linear relations between predictors and the
predicted variable. However, the approach is sequential, and successive splits are performed on fewer
and fewer observations, increasing the risk of fitting idiosyncratic data patterns. Furthermore, there
is no guarantee that the sequential splitting algorithm leads to the globally optimal solution. To deal

with these problems, we next consider a regularization method known as boosting.

Boosting
Boosting is based on the idea that combining a series of simple prediction models can lead to more
accurate forecasts than those available from any individual model. Boosting algorithms iteratively

re-weight data used in the initial fit by adding new trees in a way that increases the weight on
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observations modeled poorly by the existing collection of trees. From above, recall that a regression

tree can be written as:
J
J
T (x; {sj,cj}jzl) =S eI{zes;).
j=1

A boosted regression tree is simply the sum of regression trees:

B

J
fex)=>_T (3?; {Sb,me,j}j:l) ;
b=1
where Ty (x; {S’b’j,cb,j}jﬂ) is the regression tree used in the b-th boosting iteration and B is the
number of boosting iterations. Given the model fitted up to the (b— 1)-th boosting iteration, fp_1(z),
the subsequent boosting iteration seeks to find parameters {.S;, Cj,b}jzl for the next tree to solve a

problem of the form

T-1

(e}l = i S o (547 s 501

J=t ASjecin}io 150

For a given set of state definitions (“splits”), S;s, j = 1,...,J, the optimal constants, ¢;;, in each

state are derived iteratively from the solution to the problem

A~ . 2
Cjip = min E Wir1 — (fom1 () +cjp)]
Cj,b
€S
. 2
= min [€t+1,6—1 — Cjp) s
Cj,b
T4€S5b

where e;41,p—1 = Y1+1 — fo—1 (x¢) is the empirical error after b — 1 boosting iterations. The solution to
this problem is the regression tree that most reduces the average of the squared residuals ZZ;I ef b1
and ¢;; is the mean of the residuals in the j-th state.

Forecasts are simple to generate from this approach. The boosted regression tree is first estimated
using data from ¢t = 1,...,¢*. Then, the forecast of y;+y1 is based on the model estimates and the
value of the predictor variable at time t*, z4+. Boosting makes it more attractive to employ small trees
(characterized by few terminal nodes) at each boosting iteration, reducing the risk that the regression
trees will overfit. Moreover, by summing over a sequence of trees, boosting performs a type of model

averaging that increases the stability and accuracy of the forecasts.
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2.3 Implementation

We implement our BRT model by following Gu, Kelly, and Xiu (2020). We divide our sample period
(1963-2019) into 12 years of training sample (1963-1974), 12 years of validation sample (1975-1986),
and the remaining 33 years (1987-2019) for out-of-sample testing. We begin the out-of-sample period
in 1987 in order to align with Gu, Kelly, and Xiu (2020).

We refit our model every year because our fundamental signals are updated annually. Each time
we refit the model, we increase the training sample by one year while maintaining the length of the
validation period at 12 years. This recursive window approach allows for the incorporation of all
available information in generating forecasts. Every year, we generate return forecasts for all the
stocks in our sample. We then construct decile portfolios based on the predicted returns. We hold
these portfolios for 12 months and rebalance them every year. Our long-short strategy goes long in
the decile portfolio with the highest BRT expected returns and short in the decile portfolio with the
lowest BRT predicted returns.

To generate return forecasts, we need to estimate the model’s parameters using the training data
and specify two key hyper-parameters, i.e., the number of boosting iterations and the BRT shrinkage
parameter (also known as the learning rate). To choose these two hyper-parameters, we adopt the
commonly used grid search with validation procedure (Hastie, Tibshirani, and Friedman, 2009; Gu,
Kelly, and Xiu, 2020).° We leave all other tuning parameters at their Light GBM default values.

Specifically, we first use the training sample to estimate the model under each set of hyper-
parameter values. We then use the hyper-parameters that show the best performance during the
validation period to re-estimate the final model. For example, suppose we want to forecast the cross-
section of stock returns for 1987. We fit models under different hyper-parameter values during the
training period 1963-1974 and then use the validation period 1975-1986 to gauge the performance of
these trained models. We choose the hyper-parameters that deliver the best performance during the
validation period and then use these hyper-parameters to re-estimate the final model for the combined
training and validation period 1963-1986. When we move forward and forecast the cross-section of
stock returns for 1988, our validation period rolls forward by one year and stays at 12 years, i.e.,
1976-1987, while our training period increases by one year and goes from 1963 to 1975 (13 years).!°

Our fundamental signals contain missing values. Although BRT can handle missing values, we

90ur grid for the number of boosting iterations is {100,250, 500, 750, 1000}, while our grid for the learning rate is
{0.01,0.05,0.10}.
10We show in Section 4.2 that our main results are robust to alternative training and validation periods.
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pre-process the missing values to make BRT forecasts comparable to other machine learning methods
that cannot handle missing values. Specifically, we follow the approach of Gu, Kelly, and Xiu (2020)

11 Recall that we have normalized all

and replace missing values with the cross-sectional median.
non-missing fundamental signals to the [—1,+1] interval by using their cross-sectional ranks. By
construction, the cross-sectional median of the transformed signals is zero. We, therefore, assign all

missing values as zero.'?

Performance Evaluation

Each year we sort all sample stocks into deciles based on BRT predicted returns, construct equal-
and value-weighted portfolios, and focus on the long-short strategy that buys stocks in the top decile
and shorts stocks in the bottom decile. We estimate CAPM 1-factor, Fama-French 3-factor, Carhart
4-factor, Fama-French 5-factor, Fama-French 5-factor + Momentum factor, and Q factor models by

running the following time-series regressions:

rv=a+ 8 MKT; + ¢

re=a+B8 MKT,+s SMB,+h HML; + ¢

rn=a+pf MKT,+s SMB;+h HML; +u UMD, + ¢

re=a+p MKT;+s SMBy+h HML, +r RMW;+c CMA; + ¢
rmn=a+pf MKT,+s SMB;+h HML; +r RMW;+c CMA; +u UMD, + ¢

rt:a—i—ﬁMKTt—I—s SMBt—f—?"ROEt—FZIAt—FGt

where 7, is the long-short portfolio return based on BRT-generated forecasts for month ¢, and M KT,
SMB, HML, UMD, RMW ,CMA, ROE, and I A are market, size, value, momentum, profitability,
investment (FF5), return on equity, and investment (Q) factors (Carhart, 1997; Fama and French,
2015; Hou, Xue, and Zhang, 2015). We focus on the alpha estimates and their ¢-statistics estimated

using Newey and West (1987) standard errors.

1 Chen and McCoy (2022) provide a rigorous justification for the use of mean/median imputation in machine learning
studies. Specifically, Chen and McCoy (2022) compare different imputation methods in machine learning applications,
and they find that simply imputing with cross-sectional averages does a surprisingly good job of capturing expected
returns. Specifically, they find that mean/median imputation and sophisticated imputation methods lead to similar
results. They argue that cross-sectional returns predictors are largely independent, and the independence implies
observed predictors are uninformative about missing predictors, making ad-hoc methods valid.

12The performance of the BRT portfolios is similar without pre-processing the missing values.
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2.4 Look-ahead bias versus data-mining bias

The main argument of our paper is that, from an investor’s perspective, machine learning strategies
based on subsequently discovered anomaly variables cannot be implementable in real time. Real-time
investors could not have known what anomalies would be published decades later. Assuming otherwise
leads to a significant look-ahead bias and potentially inflates the economic gains for real-time investors.
We note that this is a distinct point from McLean and Pontiff (2016) in that they analyze what they
call statistical biases while we are focusing on the effect of a look-ahead bias in existing ML research.

McLean and Pontiff (2016) use the term “statistical biases” to describe a broad array of biases
inherent to the research and publication process, including data mining (i.e., many researchers search
through many potential predictive signals in an effort to find significant relations) and the publication
bias (it is easier to publish a significant result than a non-result). For ease of exposition, we will refer
to these biases collectively as “data-mining bias” in our discussion below.

McLean and Pontiff (2016) show that anomaly returns are 26% lower out-of-sample and 58% lower
post-publication. The 26% is their estimate of data-mining effects. The difference between the 58%
and the 26%, i.e., the 32%, captures the effect of informed arbitrage according to McLean and Pontiff
(2016). It shows that once a certain anomaly is published and disseminated, this information becomes
available to market participants who act on it and arbitrage the anomaly away. The implication is
that the observed predictability may no longer hold in subsequent periods or may be much weaker.
This is not because of any bias in the initial study itself but rather because the publication of the
study changed the underlying market dynamics.

In contrast to the data-mining bias, the look-ahead bias is a bias that arises when researchers use
information that was not available at the time the strategy would have been implemented in the real
world. In other words, it’s a problem of using future information to make past decisions. This often
occurs when researchers use variables that have been discovered or updated in the literature but which
would not have been known or available to traders at the time the trading decisions were supposedly
being made. As a result, the profitability of a trading strategy might be significantly overstated since
it was actually based on information that could not have been used in real-time trading.

The data-mining bias and the look-ahead bias are distinct from each other in that the former
typically arises in the context of evaluating in-sample predictability by econometricians who study

the economy ex-post, whereas the latter typically arises in the context of evaluating the out-of-sample
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performance of a trading strategy by real-time investors.

Both data-mining effects and look-ahead biases can lead to overstatements of predictability or
profitability (with the former inflating the in-sample predictability and the latter inflating the out-of-
sample or real-time performance of the trading strategies), but they arise from different sources. The
statistical bias arises from sampling variation and the selective nature of the research and publication
process. The look-ahead bias arises from the inappropriate use of future information in a historical
simulation of a trading strategy. Recognizing and understanding these biases is important for both

researchers and practitioners in financial markets.

3 Main Results

In this section, we report the main results of our paper. We start by reporting in Section 3.1 the
baseline results that compute the out-of-sample realized returns for BRT portfolios. We then report
in Section 3.2 the abnormal performance of the BRT portfolios that control for various risk factors.
Section 3.3 examines the performance of BRT long-short portfolios across large and small stocks.
Section 3.4 uses an alternative machine learning method, i.e., neural networks. Section 3.5 examines
the machine learning performance based on a universe of past-return signals. Section 3.6 examines
whether our ML implementation can generate high long-short returns and Sharpe ratio using published
predictors. Section 3.7 quantifies the role of short-term reversal in explaining the performance of
our and previous machine learning strategies. Finally, Section 3.8 examines the after-trading-cost

performance of our machine learning strategies.

3.1 Baseline Results

Table 1 shows the results of our baseline analysis. As stated earlier, we sort stocks into deciles each
year based on one-year-ahead BRT predicted returns. We then construct a long-short portfolio that
buys stocks with the highest BRT predicted returns and sells stocks with the lowest BRT predicted
returns. We track the performance of these portfolios for 12 months. Following Gu, Kelly, and Xiu
(2020), we report in Table 1 the BRT predicted returns (i.e., the sorting variable), the average realized
returns, the standard deviation of realized returns, and the Sharpe ratios of BRT-sorted portfolios.
The left panel of Table 1 focuses on equally weighted portfolios. The first column shows the BRT

predicted return, which is by construction monotonically increasing from decile 1 (-0.04% per month)
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to decile 10 (1.69% per month). The second column reports the out-of-sample average realized return
for each portfolio: our primary variable of interest. We find that the performance of BRT portfolios
increases nearly monotonically from decile 1 (-0.01%) to decile 10 (0.94%). The long-short portfolio
earns an average return of 0.95% per month (or 11.4% per year), with a highly significant ¢-statistic
of 6.63.

The standard deviation of the realized returns is U-shaped across the BRT decile portfolios, i.e.,
the portfolios with the lowest and the highest BRT predicted returns have higher volatilities than the
other portfolios. Not surprisingly, we find that the long-short portfolio has a much lower volatility
than the long-only portfolios. Finally, the last column of the left panel reports the annualized Sharpe
ratio, which ranges from -0.01 to 0.48 across the ten BRT decile portfolios. The Sharpe ratio of the
long-short portfolio is much higher at 1.02, which is primarily driven by the lower volatility of the
long-short portfolio.

Equally weighted portfolios tend to overweight small-cap stocks that can be harder and more
expensive to trade (e.g., Fama and French (2008) and Novy-Marx and Velikov (2016)). To mitigate
this issue, we examine in the right panel of Table 1 the value-weighted portfolio returns. The BRT
predicted return is again by construction monotonically increasing from decile 1 (0.00%) to decile 10
(1.61%). More importantly, the realized average portfolio return also increases from decile 1 (0.40%)
to decile 10 (0.80%), although the relation is far from monotonic. The spread between decile 10 and
decile 1 is 0.40% per month, or 4.8% per year.!> Even though this spread is statistically significant
at the 5% level, its magnitude is less than half of the spread for equally weighted portfolios. The
Sharpe ratio exhibits a similar pattern, higher for decile 10 (0.47) than for decile 1 (0.22). The Sharpe
ratio for the long-short portfolio is underwhelming at 0.30. As a comparison, the Sharpe ratio for
the market portfolio over the same period is 0.45. Therefore, the out-of-sample performance of our
real-time machine-learning strategies is economically modest.

Overall, we show in Table 1 that long-short portfolios formed based on BRT forecasts earn sta-
tistically significant returns, especially in equal-weighted portfolios. The magnitude of the long-short
performance, however, is much lower than those documented in the prior literature. For example, the
BRT models in Gu, Kelly, and Xiu (2020) achieve an equally weighted monthly long-short portfolio

return of 2.14% per month and a Sharpe ratio of 1.73. The corresponding numbers for value-weighted

13These returns are before trading costs. We report the before-trading cost performance of our machine learning
strategies for ease of comparison with prior literature (e.g., Chen, Pelger, and Zhu (2022); Freyberger, Neuhierl, and
Weber (2020); Gu, Kelly, and Xiu (2020)). In Section 3.8, we examine the after-trading-cost performance of our machine
learning strategies.
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portfolios are 0.99% per month and a Sharpe ratio of 0.81.1% The long-short portfolios formed based
on neural network forecasts perform even better in Gu, Kelly, and Xiu (2020), earning an average
return of 3.27% per month and an annualized Sharpe ratio of 2.45 in equal-weighted portfolios and an
average return of 2.12% per month and a Sharpe ratio of 1.35 in value-weighted portfolios. Similarly,
Chen, Pelger, and Zhu (2022) report an out-of-sample Sharpe ratio of 2.60 and Freyberger, Neuhierl,
and Weber (2020) report that their model delivers an out-of-sample Sharpe ratio of 2.75. To sum up,
while our results indicate that machine learning methods show promise in predicting stock returns,
they are less extreme than those presented in the prior literature. The main difference between our
paper and prior studies is that we employ a universe of fundamental signals that could have been em-
ployed ex-ante by a real-time investor. The conditioning information set we adopt is, therefore, free
from data-mining concerns and look-ahead biases. Once we control for a more realistic information
set, our results indicate that the economic gains to real-time investors from using machine learning

methods are substantially smaller than previously documented.

3.2 Controlling for Common Risk Factors

The results in Table 1 do not control for risk exposures. It could be that the long-short portfolios
based on BRT forecasts have positive and significant returns because they are exposed to well-known
sources of risk, such as value or profitability. Table 2 shows the risk-adjusted performance of our BRT
portfolios once we control for risk exposures using the six models described in Section 2.3. Irrespective
of whether we use the CAPM model (columns 1-2), the Fama-French 3-factor model (columns 3-4),
the Carhart 4-factor model (columns 5-6), the Fama-French 5-factor model (columns 7-8), the Fama-
French 5-factor model augmented with momentum (columns 9-10) or the g-factor model (columns
11-12), we find that portfolios with higher BRT predicted returns have higher average realized risk-
adjusted returns. Taking the Carhart 4-factor model as an example, we find that the alpha of decile
1 is negative and significant at -0.71% per month (¢-statistic=-4.65), while the alpha of decile 10 is
0.37% per month (¢-statistic=2.64). The resulting long-short portfolio has a monthly alpha of 1.08%
and is statistically significant with a t-statistic of 6.43.

The results for value-weighted risk-adjusted returns are weaker than the equal-weighted results—in

line with the findings in Table 1. Across the various risk-adjustment models, the monthly abnormal

14We note that we implement our BRT model using Light GBM, while Gu, Kelly, and Xiu (2020) implement using
scikit-learn. When we implement our model using scikit-learn in conjunction with our fundamental signals, we obtain
even less significant results than what we currently report in the paper.
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performance ranges from a minimum of 0.46% (5.52% annualized) for the CAPM to a maximum of
0.80% (9.60% annualized) for the Fama-French 5-factor model with momentum. In all cases, the
alphas of the long-short portfolios are statistically different from zero.

Consistent with the findings reported in Section 3.1, our results suggest that machine learning
tools indeed can help predict stock returns. Still, the degree of predictability is significantly lower
than what has been reported in the literature once we use as covariates the universe of signals that
investors could have constructed in real-time and not the ones that have shown to be successful ex-post

in predicting the cross-section of stock returns.

3.3 Focusing on Stocks with Different Market Capitalizations

The strategies we examine in this paper are more likely to be implemented by institutional investors
rather than individual investors because they are the ones with the resources and sophistication to
use machine learning methods. Previous studies (e.g., Gompers and Metrick (2001)) have shown
that institutional investors prefer large-capitalization stocks because they are more liquid and more
investable. To evaluate whether the profitability of our machine learning strategies varies across
stocks with different capitalizations, each year we divide our sample stocks into two groups based
on the median market capitalization: those above the median are large stocks and those below the
median are small stocks. We then repeat our baseline analysis for each of these two groups of stocks
and report the results in Table 3.

The top panel of Table 3 reports the results for equal-weighted portfolios. We find that the raw
and risk-adjusted long-short returns are positive and significant for both large and smalls stocks. More
importantly, the long-short performance is significantly higher for small stocks than for large stocks.
Specifically, the long-short return is 0.63% per month (¢-statistic=2.93) for the large stocks, and is
1.13% (t-statistic=6.14) for small stocks. The lower predictive performance for large stocks is not
surprising. These stocks are likely to incorporate new information more quickly and are hence less
likely to be predictable using machine learning algorithms.

The results for value-weighted portfolios are qualitatively similar. The average long-short return
for large stocks is only 0.27% (t-statistic=1.23). The long-short returns for large stocks do become
marginally significant when we control for risks using the Carhart 4-factor model, the Fama-French
5-factor model, the Fama-French 5-factor augmented with momentum, and the g-factor model. In

comparison, the average long-short return for small stocks is economically and statistically significant
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whether we examine raw or risk-adjusted returns. For example, the average long-short return for
small stocks is 1.16% (t-statistic=>5.50).

Overall, the results in Table 3 indicate that the long-short performance of BRT portfolios is weaker
for large stocks than for small stocks. This finding suggests that machine learning methods are better
at predicting the returns of smaller stocks, for which news is incorporated more slowly into asset
prices. As institutional investors are reluctant to trade smaller capitalization stocks because they are
less liquid and less scalable, our results suggest that the benefits of machine learning strategies may

be even more limited for institutional investors.

3.4 Neural Networks

In our baseline analysis, we use BRT, which is one of the most powerful machine learning methods
for stock return predictions. Nevertheless, one might be concerned that our main results are model-
specific and may not extend to other machine-learning methods. To ensure this is not the case, we
extend our analysis to Neural Networks (NNs) mainly because—together with boosted regression
trees—NNs are among the top performers when it comes to return prediction (Gu, Kelly, and Xiu,
2020; Bianchi, Biichner, and Tamoni, 2021). We follow Gu, Kelly, and Xiu (2020) and conduct our
analysis using NNs with 1 to 5 hidden layers.

Our results, reported in Table 4, reveal several important findings. First, the equal-weighted
long-short returns based on NNs are generally significant, while the value-weighted long-short returns
are insignificant. Second, among equal-weighted portfolios, we find that shallow NNs perform better
than deep NNs. For example, NNs with 1 and 2 hidden layers achieve long-short returns of 0.66%
(t-statistics=3.19) and 0.85% per month (¢-statistics=4.18), respectively. NNs with 3 or 4 hidden
layers exhibit much lower but still significant long-short returns, while NNs with 5 hidden layers
generate insignificant long-short portfolio returns. This finding is consistent with Gu, Kelly, and Xiu
(2020), who show that shallow learning performs better than deep learning. Third, the performance
of long-short portfolios based on neural network forecasts is much weaker than those documented by
prior machine learning studies, particularly for value-weighted portfolios. Gu, Kelly, and Xiu (2020),
for example, show that the long-short portfolios formed based on neural network forecasts earn an
average return of 3.27% per month in equal-weighted portfolios and an average return of 2.12% in
value-weighted portfolios. Overall, similar to BRT, our results based on neural networks suggest that

the real-time performance of machine learning strategies is more modest than that portrayed by prior
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studies.

3.5 Past-return Signals

Our analyses so far have focused on fundamental signals. The main reason for this focus is that we
can construct a “universe” of fundamental signals (Yan and Zheng, 2017). Past return-based signals
represent another class of signals for which we can construct an “exhaustive” list. In this section, we
follow Martin and Nagel (2022) and construct a universe of past return-based signals and then repeat
our main analyses.'® Specifically, we include in our universe the monthly returns during the past 120
months, excluding the most recent month.!® Therefore, we have 119 past return-based signals for this
analysis.

Our stock sample for this analysis consists of the NYSE, AMEX, and NASDAQ common stocks
(with a CRSP share code of 10 or 11) with valid past return data. We exclude those stocks with
a share price lower than $1 at the end of month ¢ — 1. For ease of comparison with our analysis
of fundamental signals and previous machine learning studies, the sample period of our past-return
analysis spans from July 1963 to December 2019. We employ the same training, cross-validation, and
out-of-sample testing periods as in our study of fundamental signals.

We continue to use BRT as the primary machine-learning method. We also examine Neural
Networks with 1 to 5 hidden layers. As in our analysis of fundamental signals, we form long-short
portfolios of stocks based on the machine learning predicted returns. Specifically, we go long in the
stocks with the highest predicted returns and short in the stocks with the lowest predicted returns. We
track the performance of these portfolios for one month and compute the return spread between the
long and short portfolios. For performance evaluation, we report alphas for the long-short portfolio
using the CAPM, the Fama-French three-factor model, and the Carhart four-factor model, the Fama-
French five-factor alphas, Fama-French five-factor plus momentum factor alphas, and g-factor alphas.
We report results for both equal-weighted and value-weighted portfolios.

Table 5 report the results.!” We find that the BRT strategy based on past-return signals earns
an average return of 1.38% per month (¢-statistic=4.93) and exhibits an annualized Sharpe ratio

of 1.04 in equal-weighted portfolios. The performance of value-weighted portfolios is significantly

15Moritz and Zimmermann (2016) and Murray, Xiao, and Xia (2022) also examine machine learning strategies based
on past-return signals.

16Martin and Nagel (2022) exclude the most recent month to avoid microstructure effects. In Section 3.7, we repeat
our analysis by adding the most recent month return to the predictor set.

17For brevity, we show decile-by-decile results in Table IA.18 in the Internet Appendix.
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weaker. The average long-short return is 0.78% per month (¢-statistic=2.41), while the Sharpe ratio
is 0.46. The results based on neural network forecasts are qualitatively similar, with shallow networks
(NN1 through NN3) performing similarly to BRT and deep networks (NN4 and NN5) performing
significantly worse than BRT.

Risk-adjusted returns indicate that the performance is significantly reduced when we control for
the momentum factor. For example, the Carhart alpha is 1.09% (¢-statistic=6.62) for equal-weighted
long-short portfolios and 0.63% (t-statistic=3.05) for value-weighted portfolios. The FF5+MOM
alpha is even lower, at 0.78% (¢-statistic=5.83) for equal-weighted long-short portfolios and 0.28%
(t-statistic=1.55) for value-weighted portfolios. The smaller Carhart alpha and the FF5+MOM alpha
are not surprising because much of the predictive ability of past returns is related to the momentum
effect of Jegadeesh and Titman (1993).

Overall, our results based on past-return signals are broadly consistent with those based on funda-
mental signals. Specifically, we find significant long-short returns for our machine learning strategies,
suggesting that real-time investors do benefit from using machine learning forecasts. However, the
performance of these real-time machine-learning strategies is considerably weaker than those reported
in the prior literature.

We would like to point out that although we examine both fundamental signals and past-return
signals in our paper, our focus is on the fundamental signals. This is because, although one can
construct a “universe” of past return signals (e.g., the past 120 months of returns in our paper), most
of these signals are closely related to published, “known” predictors of stock returns. In particular,
prior literature has documented (i) the long-run reversal anomaly (e.g., De Bondt and Thaler (1985)),
which shows that past 3-5 years of returns negatively predict future returns; (ii) the momentum
anomaly (Jegadeesh and Titman, 1993), which shows that past 6 to 12 months of returns positively
predict future returns; (iii) the short-term reversal anomaly (e.g., Jegadeesh (1990)), which shows that
past one-month return is a negative predictor of future returns, and (iv) seasonality anomaly (Heston
and Sadka, 2008), which shows that lag returns at the 12-month frequency (i.e., t-12, t-24, ¢t-36, etc.)
positively predict future returns. Collectively, these previous studies have shown that more than
half of the returns in the past 120 months are related to published predictors of stock returns.'® As
such, one might argue that the performance of machine-learning strategies based on these past-return

signals may also be biased upward due to potential look-ahead concerns.

18In comparison, while our universe of fundamental signals also contains published signals (it should; otherwise, it is
not a “universe”), published signals represent only a tiny fraction of our universe of fundamental signals.
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3.6 ML Implementation

One might be concerned that the relatively weak performance of our machine learning strategies is
perhaps due to our ML implementation not being as powerful as those employed in previous studies.
To evaluate this possibility, we replicate our ML results—both Boosted Regression Trees (BRT) and
Neural Networks (NN)—on samples of published anomalies.

The first sample is the Chen and Zimmermann (2022, CZ) predictors. We download the data from
https://www.openassetpricing.com/. We use the March 2022 data release, which includes 207
anomaly predictors.'® For ease of comparison with GKX, we also use the sample of 94 anomalies listed
in Green, Hand, and Zhang (2017, GHZ).2° We download the SAS code that generates the 94 predictors
from Jeremiah Green’s Web site at https://sites.google.com/site/jeremiahrgreenacctg/home.
The out-of-sample testing period for this analysis is 1987-2019, the same as that for our main analyses
based on fundamental signals and past-return signals.?!

In Table 6, we report the results based on the GHZ sample of anomalies. We find that both
BRT and shallow Neural Networks (NN1 through NN3) deliver an out-of-sample long-short return in
excess of 3.5% per month for equally weighted portfolios and over 1.5% per month for value-weighted
portfolios, in line with the results in Gu, Kelly, and Xiu (2020). We find very similar findings when
we focus on risk-adjusted returns, as shown in the remaining columns of Table 6. We also find that
BRT and shallow Neural Networks generate a Sharpe Ratio between 2.35 and 2.95 in equal-weighted
portfolios. These numbers are consistent with prior literature (e.g., Gu, Kelly, and Xiu (2020)) as our
ML implementation could generate Sharpe ratios of around 2.5 using published predictors.

In Table 7, we report the results that use the Chen and Zimmermann (2022) covariates. The
results for this set of covariates are even more impressive. For example, BRTs generate an equal-
weighted long-short return of 5.18% per month and a VW long-short return of 2.32% per month.
Adjusting for risk using standard models reveals very similar findings. Furthermore, BRTs deliver an
equally-weighted Sharpe Ratio of 3.68. The results for shallow Neural Networks are somewhat lower

than those of BRTs but still very strong.

9The definitions of these variables are available at https://www.openassetpricing.com/march-2022-data-release/.

20GKX construct their data set based on GHZ’s 94 characteristics, and GKX modified some variable definitions, see
Gu, Kelly, and Xiu (2020, footnote 30). The GKX shared data set stops at 2016, and we cannot extend the data set.
We also performed our analysis using GKX’s shared data set and found similar magnitude of performance from 1987
to 2016.

21'We also consider three alternative out-of-sample testing periods, namely 1987-2016, 1991-2004, and 1991-2014.
The performance of machine-learning strategies during these alternative sample periods is qualitatively similar to and
quantitatively stronger than that for 1987-2019.
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Taken together, these results indicate that, our ML implementation is capable of generating rather
strong performance when we use published predictors. Of course, as we have argued, machine learning
strategies based on subsequently discovered anomalies cannot be implemented in real time and their
performance is likely inflated due to a look-ahead bias. Nevertheless, the fact that we are able to
replicate the strong ML performance of previous studies when we use published predictors indicates
that our ML implementation is not the reason why the performance of ML strategies based on our

universe fundamental signals is relatively weak.

3.7 The Role of Short-term Reversal

As noted earlier, we exclude short-term reversal (past one-month return) from our universe of past-
return signals. Prior studies including Gu, Kelly, and Xiu (2020), Freyberger, Neuhierl, and Weber
(2020), and Chen, Pelger, and Zhu (2022), however, include short-term reversal in their predictor
sets. As such, one might reasonably wonder about the role of short-term reversal in explaining
the performance difference between our machine learning strategies and those employed by previous
studies. In particular, is the strong performance of previous ML strategies based on published factors
due to their inclusion of short-term reversal? Is the relatively weak performance of our ML strategies
driven entirely by the omission of short-term reversal in our predictor set?

We perform two analyses to address these questions. In the first analysis, we remove short-term
reversal from the samples of published factors and construct machine learning strategies based on the
remaining published factors. As before, we consider two samples of published factors: Green, Hand,
and Zhang (2017)’s 94 anomaly variables and Chen and Zimmermann (2022)’s 207 anomaly factors.
After excluding the short-term reversal factor, the GHZ sample includes 93 predictors, while the CZ
sample includes 206 factors. The out-of-sample period is 1987-2019.22

We report the performance of the above machine learning strategies in Table 8 (the GHZ sample)
and Table 9 (the CZ sample). For ease of comparison, we report, in each table, the performance of
the machine learning strategy including the short-term reversal first and then the performance of the
machine learning strategy excluding the short-term reversal.?

Overall, we find that excluding short-term reversal reduces the ML strategy performance. However,

22We also perform this analysis for alternative out-of-sample testing periods. For brevity, we report these results in
Table IA.12 and Table IA.13 in the Internet Appendix. The qualitative results for these sub-periods are the same as
those for 1987-2019.

23For brevity, we report raw long-short returns in Table 8 and Table 9. We report risk-adjusted returns in Table IA.14
and TA.15 in the Internet Appendix.
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the strong performance of the machine learning portfolios remains intact even after excluding short-
term reversal from the samples of published factors. For example, in Table 8, where we examine
the GHZ anomalies, we find that the equal-weighted long-short return for BRT strategy is 3.57% (¢
stat=8.91) when short-term reversal is included in the predictor set, and is 3.04% (¢-stat=9.11) when
the short-term reversal is excluded. Table 9, where we examine the CZ anomalies, we find that the
equal-weighted long-short return for the BRT strategy is 5.18% (t-stat=9.91) when short-term reversal
is included in the predictor set, and is 4.87% (t-stat=10.05%) when short-term reversal is excluded.
The magnitude of the performance reduction is modest at best. Furthermore, the long-short returns of
these ML strategies, even after excluding short-term reversals, remain considerably higher than those
based on our universe of fundamental signals. Recall that the equal-weighted long-short return of the
machine learning strategy based on our universe of fundamental signals is “merely” 0.95% per month.
The results based on NN strategies and value-weighted portfolios are qualitatively similar. That is, we
find that the performance of NN strategies is quantitatively reduced, but remains qualitatively similar
even after excluding short-term reversal, suggesting that short-term reversal alone cannot explain the
extraordinary performance of the machine learning strategies based on published factors.

In the second analysis, we add short-term reversal to our set of past-return signals and repeat
our machine learning analysis. As a result of this addition, we have 120 past monthly returns in the
predictor set. We report the performance of this ML strategy in Table 10. The results reveal a modest
increase in the ML performance after short-reversal is added to the predictor set. For example, the
EW long-short return for the BRT strategy is 1.38% (¢-stat=4.93) without short-term reversal and
is 1.81% (t-stat=6.40) with short-term reversal. The VW long-short returns increase from 0.78%
(t-stat=2.41) without short-term reversal to 0.98% (t¢-stat=3.14) with short-term reversal.

Overall, we find that the omission of short-term reversal does have a moderate impact on the
performance of our ML strategy. However, the long-short returns, even after including short-term
reversal, remain significantly lower than those for the ML strategies based on GHZ and CZ samples of
published factors. These results once again suggest that short-term reversal alone cannot explain the

performance difference between our machine learning strategies and those based on published factors.

3.8 After-trading-cost Performance

For ease of comparison with prior literature (e.g., Gu, Kelly, and Xiu (2020); Freyberger, Neuhierl,

and Weber (2020); Chen, Pelger, and Zhu (2022)), we focus on the gross performance of our machine
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learning strategies in this paper. There is, however, growing attention to trading costs in the anomaly
literature and ML literature (e.g., Novy-Marx and Velikov (2016); Chen and Velikov (2022); Jensen
et al. (2022)). In this section, we provide a simple analysis of the net performance (after-trading-cost
returns) of our machine learning strategies.

We follow the general approach of Chen and Velikov (2022) to calculate turnover, trading costs,
and net returns to long-short trading strategies. We also use their low-frequency (LF) measures of
effective spreads as our trading cost measure.?* These four LF measures are (i) Hasbrouck (2009)’s
Gibbs sampler estimate, (ii) Corwin and Schultz (2012)’s high-low measure, (iii) Kyle and Obizhaeva
(2016)’s volume-over-volatility measure, and (iv) Abdi and Ranaldo (2017)’s close-high-low measure.
Following Chen and Velikov (2022), we use the average of the four low-frequency (LF) measures of
effective spreads.

In Table 11, we show that the turnover rate for our BRT strategy based on fundamental signals
is fairly low, with a two-sided turnover of 14% per month for both EW portfolios and VW portfolios.
These relatively low turnover rates are not surprising because most of the fundamental signals are
updated annually and we rebalance our portfolios once a year. We find that trading costs account
for significantly less than half of the gross returns to our ML strategy. The net returns to the BRT
strategy remain positive, at 0.73% per month for EW portfolios and 0.25% for VW portfolios. The net
returns of NN strategies are mixed, with some being positive and others negative. We note that the
gross returns reported here are slightly different from those of our baseline analysis. This is because
the trading cost data is available only up to 2017, so the sample period for this analysis is slightly
shorter than our baseline analysis.

Table 12 reports the corresponding results for our past-return-based machine-learning strategies. In
contrast to those for fundamental signals, we find that the turnover rate for past-return-based machine-
learning strategies is extremely high, well over 100% in both equal- and value-weighted portfolios. As
a consequence, we find that net returns to machine learning strategies are consistently negative. For
example, the net return for BRT strategies is -0.97% per month for equal-weighted portfolios and
-0.29% for value-weighted portfolios. Adding short-term reversal to the predictor set improves the
gross returns but makes the net returns even worse. Specifically, the net return is -1.48% per month

for equal-weighted portfolios and -0.40% for value-weighted portfolios after including the short-term

24Due to the data availability issue, we do not adopt their high-frequency (HF) measures of effective spreads. We
download the LF data from Andrew Chen’s website at https://sites.google.com/site/chenandrewy/. We note their
data is available up to 2017, so our analysis ends in 2017.
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reversal. The results for NN strategies are mostly worse than those for BRT strategies.

Chen and Velikov (2022) note that LF spreads are biased upward by 25-50 basis points (compared
to HF effective spreads) post decimalization. As such, the net returns to our machine learning strate-
gies reported in Table 11 and Table 12 may be too low. We decided not to make an ad-hoc adjustment
related to this bias because despite their upward bias relative to HF spreads, the LF spreads may
underestimate the total trading costs because they do not include other important components of
trading costs, such as the cost of short selling and price impact. The shorting cost is particularly
important for us because our machine learning strategies are long-short strategies.

Overall, we show that the net performance of ML strategies is positive for fundamental signals and
negative for past-return signals. We acknowledge that our analysis is exploratory and preliminary.
An in-depth trading cost analysis that incorporates HF spreads, shorting cost, and price impact is a

promising area of future research in the machine learning literature.??

4 Additional Results

In this section, we provide several extensions of our baseline analysis. Section 4.1 employs rolling
windows instead of recursive windows in estimating the BRT model. Section 4.2 studies whether our
results are robust to alternative training and validation periods. Section 4.3 examines different subsets
of our universe of fundamental signals. Section 4.4 we compute the in-sample performance of BRT
portfolios and then compare it with the out-of-sample performance. Finally, Section 4.5 investigates
whether the performance of BRT portfolios varies with economic and market conditions. For brevity,

we report the results of these additional analyses in the Internet Appendix.

4.1 Rolling Windows

We use recursive windows in our baseline specification to align ourselves with the majority of the
literature (e.g., Gu, Kelly, and Xiu (2020)). Recursive windows allow for incorporating all available
information in generating forecasts, but they can lead to poor forecasts if the data-generating process
changes over time. An alternative to recursive windows is rolling windows that generate forecasts based
on less information and hence are potentially less precise but are more robust to time variations in the

relation between fundamental signals and returns. If the relation between the fundamental signals and

25We also examine the after-trading cost performance of machine-learning strategies based on the GHZ and CZ samples
of published anomalies. For brevity, we report the results in Table IA.16 and Table IA.17 in the Internet Appendix.
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stock returns is time-varying, rolling windows may improve the predictive power of machine learning
algorithms. To assess this possibility, we repeat our main analysis using the rolling window approach
described below.

We set the initial estimation period to 24 years so that our out-of-sample test period starts from
1987, the same as in the recursive window approach. To select the optimal hyper-parameters, we split
the 24 years into training and validation periods following our baseline specification. In particular,
our training period is 12 years, and the validation period is 12 years.?S After obtaining the optimal
hyper-parameters, we re-estimate the final model using the 24-year window. Each year we refit the
model by moving the 24-year window forward by one year. The estimation period is fixed at 24
years under the rolling window approach. In comparison, under the recursive window approach, the
estimation period expands as we roll forward.

Table TA.1 presents the performance of BRT portfolios for the rolling window approach. We find
that the equally weighted portfolios achieve a long-short return of 0.83% per month (¢-statistic=4.29)
and a Sharpe ratio of 0.77. These numbers are lower than their counterparts for the recursive window
approach. Specifically, in Table 1 we report that the equal-weighted portfolios exhibit a long-short
return of 0.95% (¢-statistic=6.63) and a Sharpe ratio of 1.02. The risk-adjusted returns for the rolling
window approach are also correspondingly lower than those for the recursive window approach. The
results for value-weighted portfolios paint a similar picture. For example, the average long-short
return is 0.33% (t-statistic=1.35) under the rolling window approach, compared to the 0.40% (t-
statistic=2.34) under the recursive window approach. Overall, we find that the performance of BRT

portfolios is somewhat weaker for the rolling window approach than for the recursive window approach.

4.2 Alternative Training and Validation Periods

In our baseline specification, we use an initial training period of 12 years and a validation period of
12 years. In comparison, Gu, Kelly, and Xiu (2020) employ an initial training period of 18 years
and a validation period of 12 years. As explained earlier, we choose an initial training period of 12
years because we want to start our out-of-sample test period in 1987, the same as in Gu, Kelly, and
Xiu (2020). In this section, we examine whether our results are robust to our choices of the initial
training period and validation period. Specifically, we consider nine alternative specifications in which

the initial training period varies from 10 to 18 years, while the validation period varies from 10 to 14

26We have considered several alternative training and validation periods and find our results to be qualitatively similar.
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years. We examine the performance of BRT portfolios under each of these alternative specifications.

Table TA.2 presents the results. The top panel reports the results for equal-weighted portfolios,
while the bottom panel reports the results for value-weighted portfolios. For convenience, we reproduce
the results for our baseline specification in the first row of each panel. Our baseline specification is
denoted as “124+12”, meaning 12 years of initial training period and 12 years of validation period.
We denote the alternative specifications similarly. For example, “18412” means 18 years of initial
training and 12 years of validation period.

Overall, our results are highly robust across all alternative specifications. For example, the equal-
weighted long-short returns range from 0.87% to 1.02% across the alternative specifications, compared
to 0.95% for the baseline specification. Similarly, the value-weighted long-short returns range from
0.37% to 0.55% across the alternative specifications, compared to 0.40% for the baseline specification.
The level of statistical significance for the long-short returns is also similar between the baseline and
alternative specifications. Finally, the results on risk-adjusted returns are also robust to alternative

specifications of initial training and validation periods.

4.3 Results Obtained on Subsets of the Fundamental Signals

Our baseline analysis employs a large number of predictor variables. Specifically, we construct a
universe of 18,113 fundamental signals based on permutations of 240 accounting variables and 76
financial ratio configurations. One may argue that not all of these signals are actually considered by
real-time investors and that the inclusion of these signals weakens the out-of-sample performance of
our machine learning strategies. As noted earlier, BRT are known to be robust to the inclusion of
irrelevant predictors. Nevertheless, to explore whether our relatively weak out-of-sample performance
is driven by the large number of signals in our universe, we repeat our analysis on various subsets of

the fundamental signals used in our baseline analysis.

4.3.1 Results using Subsets of the 240 Accounting Variables. In this section, we re-compute
our baseline results for subsets of 240 accounting variables ranked based on the percentage of miss-
ing values across all stocks for the period 1963-2019. Some accounting variables are missing for all
firms before a certain year. For example, all cash flow statement variables are missing before 1988.
Including the years for which these variables were missing would artificially inflate their missing value

proportions, so when computing the missing rate for an accounting variable, we exclude those years
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for which the variable is missing for all stocks. Appendix B reports the missing rates for all the 240
accounting variables in our data. Consistent with our expectation, we find that accounting variables
with fewer missing values tend to be more important variables. For example, only 0.01% of the “total
assets” are missing. For “total sales”, the missing rate is also extremely low at 0.05%. In comparison,
71.1% of the “non-recurring discontinued operations” are missing.

The first row in each panel of Table IA.3 shows the BRT performance based on the fundamental
signals constructed using the 30 accounting variables with the fewest missing values. The second row
expands the set to 60 accounting variables with the lowest missing value rates. Each of the remaining
rows increases the number of accounting variables by 30 compared to the previous row. The last
row includes all 240 accounting variables, i.e., the entire universe of signals examined in our baseline
analysis.

Examining equally weighted portfolio returns reported in the top panel, we find that the long-short
performance is the worst when we include only the 30 accounting variables with the lowest missing
value rate in our universe. Specifically, the equally weighted long-short return is 0.34% per month,
statistically insignificant with a ¢-statistic of 1.07. As we increase the number of accounting variables
in the subset, the portfolio performance generally improves. For example, the long-short portfolio
based on 60 accounting variables delivers an average monthly return of 0.71% (t-statistic=2.09), while
the one based on 210 accounting variables has an average return of 1.26% (t-statistic=6.67). The best
performance is achieved when the number of accounting variables equals 180 or 210. We do observe
a decline in performance as we increase the number of regressors from 210 to 240. The bottom panel
of Table TA.3 reports the results for value-weighted portfolios. Similar to the equal-weighted results
discussed above, we find that the performance of value-weighted portfolios generally increases with
the size of the subset and peaks when the number of accounting variables is in the 180-210 range.

Overall, our results indicate that increasing the number of accounting variables included in the
analysis enlarges the conditioning information set that can be exploited by real-time investors and
generally increases the profitability of the machine learning strategies. This finding is inconsistent
with the argument that the relatively weak performance of our machine learning strategies is due to

the large size of our universe.

4.3.2 Results using Subsets of Financial Ratio Configurations. In this section, we repeat

our baseline analysis on several subsets of the 76 financial ratio configurations. In constructing the
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universe of fundamental signals, we follow Yan and Zheng (2017) and use 15 base variables (Y) in
addition to the 240 accounting variables (X). We refer the readers to Yan and Zheng (2017) for more
details. We consider two subsets of Y’s based on the importance of such base variables. The first
subset includes the three most commonly used base variables—i.e., total assets, total sales, and market
cap—which we term “Y3. The second subset (termed “Y5”) includes two additional important base
variables, i.e., total liability and shareholder’s equity.

We also split the 76 financial ratio configurations into five categories based on their functional
forms. The first category (P1) includes the ratios of accounting variables to base variables (i.e., the
ratios #1 to #15 in Appendix C). The second category (P2) includes the change of ratios in the first
category (i.e., the ratios #16 to #30). The third category (P3) contains the percentage change of
ratios in the first category, or the ratios #31 to #45). The fourth category (P4) contains changes in
accounting variables scaled by lagged base variables (i.e., the ratios #46 to #60). The fifth category
(P5) includes the difference between the percentage changes in both accounting variables and base
variables (i.e., the ratios #61 to #75).27

The top panel of Table TA.4 shows the BRT equal-weighted portfolio performance on the two
subsets of the base variables and the five subsets of the financial ratio configurations. The equal-
weighted long-short portfolio returns are positive and statistically significant regardless of which subset
we examine. For example, when we use the three most important base variables (Y3), BRT achieve
a significant long-short return of 0.89% per month, with an associated t-statistics of 4.51. Adding
two additional base variables (Y5) leads to a long-short portfolio return of 0.90%, also statistically
significant. Similar results hold for subsets from P1 to P5, where the average long-short returns range
from 0.53% to 0.82%. It is important to note that the long-short returns for all seven subsets of
financial ratios are lower than that for the full universe of fundamental signals (0.95%). The bottom
panel of Table IA.4 repeats the exercise for value-weighted returns. As in our baseline analysis, value-
weighted returns are weaker than equal-weighted returns and often lack statistical significance. We
also find that the value-weighted long-short returns for subsets of financial ratios are generally lower
than that for the full universe of fundamental signals. The only exception is the subset Y5. Overall,
Table TA.4 shows little systematic evidence that the performance of our machine learning strategies

would be much better had we considered a significantly smaller universe of fundamental signals.

27We note that for each category, we also include the percentage change of the accounting variable itself, i.e., the ratio
#76 in Appendix C.
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4.4 In-sample Performance versus Out-of-sample Performance

Standard asset pricing models assume rational expectations, i.e., investors know the model or the data-
generating process. Martin and Nagel (2022) argue that, in the age of Big Data, this is unrealistic
and that investors face a high-dimensional prediction problem instead. A central prediction of Martin
and Nagel (2022) is that there should be a substantial wedge between in-sample and out-of-sample
predictability. We follow Martin and Nagel (2022) and analyze data from the perspective of real-
time investors. Moreover, we test their prediction by comparing the in-sample and out-of-sample
performance of a universe of fundamental signals.

In Sections 3.1 and 3.2, we have already examined the out-of-sample performance of our universe of
fundamental signals. We find that the long-short portfolios based on BRT forecasts earn positive and
significant returns out of sample. For ease of comparison, the sample period for our in-sample analysis
is the same as that for the out-of-sample test (i.e., 1987-2019). To conduct the in-sample analysis, we
fit our BRT model using the full set of 18,113 fundamental signals and use the fitted model to predict
each year’s returns. There is no consensus on how in-sample tests should be conducted in a machine-
learning context. For robustness, we perform our test in two ways. In the first, we aim to maintain
comparability with the out-of-sample analysis in Section 3.1 and select the optimal hyper-parameters
using data from 1963 to 1986. We then use these hyper-parameters to perform an in-sample analysis
for 1987-2019. In the second, we align our analysis with Martin and Nagel (2022) and select the
optimal hyper-parameters using leave-one-year-out cross-validation over 1987-2019. The procedure
uses a particular year ¢ as the validation period and the remaining years as training periods. We
choose the combination of hyper-parameters with the highest average validation performance across
all years. Finally, we retrain and test the model for the entire 1987-2019 period using the optimally
selected hyper-parameters.

We employ two performance metrics for our analyses. The first is the R? of the predictive regres-
sion. The second is the long-short portfolio return. Figure TA.1 in the Internet Appendix plots the
times-series of in-sample and out-of-sample return predictability over the period 1987-2019. In Panel
A, we compute cross-sectional predictive R%s, but instead of averaging across all periods, we compute
and plot 12-month moving averages. We depict the results for the two in-sample specifications in
orange and red, respectively, and the out-of-sample results in blue. We also plot in dark grey the

two-standard-error band around the out-of-sample R2s. Panel B plots the BRT long-short portfolio
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returns for the two in-sample specifications and the out-of-sample long-short returns, adopting the
same structure as Panel A. Both panels show that the in-sample predictability is consistently higher
than the out-of-sample predictability. The gap between in-sample and out-of-sample predictability is
often substantial, e.g., in the early 2000s. Overall, across both performance metrics, we find a sig-
nificant degradation from in-sample performance to out-of-sample performance, consistent with the

predictions of the theoretical model developed in Martin and Nagel (2022).

4.5 Testing for Time-varying Predictability

In Table TA.5, we examine whether the profitability of BRT strategies varies with economic and market
conditions. Specifically, we split our sample period based on investor sentiment,?® the VIX index also
known as the “fear-gauge”, market liquidity (Péstor and Stambaugh, 2003), business cycle indicators
as published by NBER, and market state—proxied by the cumulative market returns over the previous
24 months. We also divide our sample period into two halves (1987-2003 and 2003-2019) to examine
whether the predictability declines over time.

Panel A shows the long-short portfolio returns for high- and low-sentiment periods. When exam-
ining equal-weighted returns, we find significant predictability during both high- and low-sentiment
periods. In contrast, value-weighted long-short returns are only marginally significant during low-
sentiment periods and insignificant during high-sentiment periods. Whether we look at equal- or
value-weighted returns, the difference in long-short returns between high- and low-sentiment periods
is statistically insignificant. We find similar results in Panel B, where we divide the sample period
into high- and low-VIX periods, and in Panel C, where we divide periods into high- and low-liquidity
periods. In each panel, we find significant equal-weighted returns across both subperiods. The value-
weighted returns, however, are either insignificant or marginally significant. As in Panel A, we find
little significant evidence of differential predictability across subperiods. We also find little difference
in predictability between recession and expansion periods in Panel D.

In Panel E, we split the sample period into UP and DOWN market states based on previous
24-month cumulative market returns. We find that the long-short return is higher during UP state
than during DOWN state. Specifically, the equal-weighted long-short return is 1.24% during UP state
and 0.67% during DOWN state. Similarly, the value-weighted long-short return is 0.79% during UP
state and 0% during DOWN state. The differences in long-short returns between the UP and DOWN

28We obtain the investor sentiment’s data from Wurgler’s website at http://people.stern.nyu.edu/jwurgler/.

34



states are economically large and statistically marginally significant. In Panel F, we divide our sample
period into two halves and find no statistically significant difference in predictability during the first
and second half of our sample period.

Overall, the results in Table TA.5 indicate that the return predictability implied by our real-time
machine learning strategies does not change significantly with investor sentiment, market volatility,
market liquidity, or business cycle. However, there is some evidence that the profitability of our BRT
strategies varies systematically with the market state. Finally, we find no evidence that the return

predictability differs significantly across the two halves of our sample period.

5 Conclusions

Recent studies document strong performance for machine learning-based investment strategies. Our
analyses paint a more conservative picture of the practical value of machine learning strategies for
real-time investors. The machine learning strategies examined by prior studies use subsequently
discovered anomaly variables as predictors of stock returns and cannot be implemented in real-time.
We construct machine learning strategies based on a “universe” of fundamental signals. The out-
of-sample performance of our strategies is positive and significant, but considerably weaker than
those documented by previous studies, particularly in value-weighted portfolios. We find similar
results when examining a universe of past return-based signals. The relative weak performance of
our machine-learning strategies is not due to our ML implementation, as we are able to replicate the
strong performance of machine learning strategies based on published anomalies. Nor is it driven by
the omission of short-term reversal in our predictor set. Finally, we find that our machine learning
strategies based on fundamental signals earn positive returns after trading cost, while those based
on past-return signals earn negative net returns. Overall, our results indicate that machine learning
strategies enhance investment performance, but the economic gains to real-time investors from using

machine learning forecasts are more modest than previously thought.

35



References

Abdi, F., and A. Ranaldo. 2017. A simple estimation of bid-ask spreads from daily close, high, and

low prices. Review of Financial Studies 30:4437-80.

Arnott, R., C. R. Harvey, and H. Markowitz. 2019. A Backtesting Protocol in the Era of Machine

Learning. Journal of Financial Data Science 1:64-74.

Avramov, D., S. Cheng, and L. Metzker. 2023. Machine Learning vs. Economic Restrictions: Evidence

from Stock Return Predictability. Management Science 69:2587-619.

Avramov, D., G. Kaplanski, and A. Subrahmanyam. 2022. Postfundamentals Price Drift in Capital

Markets: A Regression Regularization Perspective. Management Science 68:7065—791.

Bali, T. G., H. Beckmeyer, M. Morke, and F. Weigert. 2023. Option Return Predictability with
Machine Learning and Big Data. Review of Financial Studies 36:3548-602.

Bianchi, D., M. Biichner, and A. Tamoni. 2021. Bond Risk Premiums with Machine Learning. Review
of Financial Studies 34:1046-89.

Breiman, L., J. Friedman, C. J. Stone, and R. Olshen. 1984. Classification and Regression Trees.
Chapman and Hall/CRC.

Bryzgalova, S., M. Pelger, and J. Zhu. 2020. Forest through the Trees: Building Cross-Sections of

Stock Returns. Working Paper, London Business School.
Carhart, M. M. 1997. On Persistence in Mutual Fund Performance. Journal of Finance 52:57-82.

Chen, A. Y., and J. McCoy. 2022. Missing Values and the Dimensionality of Expected Returns.
Working Paper arXiv:2207.13071.

Chen, A. Y., and M. Velikov. 2022. Zeroing in on the Expected Returns of Anomalies. Journal of

Financial and Quantitative Analysis 1-83.

Chen, A. Y., and T. Zimmermann. 2022. Open Source Cross-Sectional Asset Pricing. Critical Finance

Review 11:207-64.

Chen, L., M. Pelger, and J. Zhu. 2022. Deep Learning in Asset Pricing. Management Science

forthcoming.

36



Chinco, A., A. D. Clark-Joseph, and M. Ye. 2019. Sparse Signals in the Cross-Section of Returns.
Journal of Finance 74:449-92.

Chordia, T., A. Goyal, and A. Saretto. 2020. Anomalies and False Rejections. Review of Financial

Studies 33:2134-79.
Cochrane, J. H. 2011. Presidential Address: Discount Rates. Journal of Finance 66:1047-108.

Cooper, M. J., H. Gulen, and M. J. Schill. 2008. Asset Growth and the Cross-Section of Stock Returns.
Journal of Finance 63:1609-51.

Corwin, S. A., and P. Schultz. 2012. A simple way to estimate bid-ask spreads from daily high and

low prices. Journal of Finance 67:719-60.

De Bondt, W. F. M., and R. H. Thaler. 1985. Does the stock market overreact. Journal of Finance
40:793-805.

Dong, X., Y. Li, D. Rapach, and G. Zhou. 2022. Anomalies and the Expected Market Return. Journal
of Finance 77:639-81.

Fama, E. F., and K. R. French. 1992. The Cross-Section of Expected Stock Returns. Journal of
Finance 47:427-65.

. 1993. Common Risk Factors In The Returns On Stocks And Bonds. Journal of Financial

Fconomics 33:3-56.

. 1996. Multifactor Explanations of Asset Pricing Anomalies. Journal of Finance 51:55-84.

. 2008. Dissecting anomalies. Journal of Finance 63:1653-78.

. 2015. A Five-Factor Asset Pricing Model. Journal of Financial Economics 116:1-22.

Feng, G., N. Polson, and J. Xu. 2020. Deep Learning in Characteristics-Sorted Factor Models. SSRN
Scholarly Paper 1D 3243683.

Freyberger, J., A. Neuhierl, and M. Weber. 2020. Dissecting Characteristics Nonparametrically. Re-
view of Financial Studies 33:2326-77.

Friedman, J. H. 2001. Greedy Function Approximation: A Gradient Boosting Machine. Annals of
Statistics 29:1189-232.

37



Geertsema, P., and H. Lu. 2023. Relative Valuation with Machine Learning. Journal of Accounting

Research 61:329-76.

Gompers, P. A., and A. Metrick. 2001. Institutional Investors and Equity Prices. Quarterly Journal
of Economics 116:229-59.

Graham, B., and D. L. F. Dodd. 1934. Security analysis. McGraw-Hill, New York.

Green, J., J. R. M. Hand, and X. F. Zhang. 2017. The Characteristics that Provide Independent

Information about Average U.S. Monthly Stock Returns. Review of Financial Studies 30:4389-436.

Gu, S., B. T. Kelly, and D. Xiu. 2020. Empirical Asset Pricing via Machine Learning. Review of
Financial Studies 33:2223-73.

Harvey, C. R., Y. Liu, and H. Zhu. 2016. ... and the Cross-Section of Expected Returns. Review of
Financial Studies 29:5-68.

Hasbrouck, J. 2009. Trading costs and returns for us equities: Estimating effective costs from daily

data. Journal of Finance 64:1445-77.

Hastie, T., R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning: Data Mining,

Inference, and Prediction. Springer.

Haugen, R. A. R. A., and N. L. Baker. 1996. Commonality in the determinants of expected stock

returns. Journal of Financial Economics 41:401-39.

Heston, S. L., and R. Sadka. 2008. Seasonality in the cross-section of stock returns. Journal of

Financial Economics 87:418-45.

Holthausen, R. W., and D. F. Larcker. 1992. The prediction of stock returns using financial statement

information. Journal of Accounting and Economics 15:373-411.

Hou, K., C. Xue, and L. Zhang. 2015. Digesting Anomalies: An Investment Approach. Review of
Financial Studies 28:650-705.

Israel, R., B. T. Kelly, and T. J. Moskowitz. 2020. Can Machines “Learn” Finance? Journal of

Investment Management 18:23-36.

Jegadeesh, N. 1990. Evidence of Predictable Behavior of Security Returns. Journal of Finance 45:881—

98.

38



Jegadeesh, N., and S. Titman. 1993. Returns to Buying Winners and Selling Losers: Implications for
Stock Market Efficiency. Journal of Finance 48:65-91.

Jensen, T. 1., B. T. Kelly, S. Malamud, and L. H. Pedersen. 2022. Machine Learning and the Imple-

mentable Efficient Frontier. Working Paper, Swiss Finance Institute Research Paper No. 22-63.

Kaniel, R., Z. Lin, M. Pelger, and S. Van Nieuwerburgh. 2023. Machine-learning the skill of mutual

fund managers. Journal of Financial Economics 150:94-138.

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. 2017. LightGBM: A
Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural Information Processing

Systems 30, 3146-54. Red Hook, NY, United States: Curran Associates Inc.
Kelly, B. T., and D. Xiu. 2023. Financial Machine Learning. SSRN Scholarly Paper.

Kozak, S., S. Nagel, and S. Santosh. 2020. Shrinking the Cross-Section. Journal of Financial Eco-

nomics 135:271-92.

Kyle, A. S., and A. A. Obizhaeva. 2016. Market microstructure invariance: Empirical hypotheses.

FEconometrica 84:1345-404.

Leippold, M., Q. Wang, and W. Zhou. 2022. Machine learning in the Chinese stock market. Journal

of Financial Economics 145:64-82.

Martin, I., and S. Nagel. 2022. Market Efficiency in the Age of Big Data. Journal of Financial

FEconomics 145:154-77.

McLean, R. D., and J. Pontiff. 2016. Does Academic Research Destroy Stock Return Predictability?

Journal of Finance 71:5-32.

Moritz, B., and T. Zimmermann. 2016. Tree-based conditional portfolio sorts: The relation between

past and future stock returns. Working Paper.

Murray, S., H. Xiao, and Y. Xia. 2022. Charting By Machines. SSRN Scholarly Paper 3853436,
Rochester, NY.

Newey, W. K., and K. D. West. 1987. A Simple, Positive Semi-Definite, Heteroskedasticity and

Autocorrelation Consistent Covariance Matrix. Econometrica 55:703-8.

39



Novy-Marx, R., and M. Velikov. 2016. A Taxonomy of Anomalies and Their Trading Costs. Review
of Financial Studies 29:104—47.

Ou, J. A, and S. H. Penman. 1989. Financial Statement Analysis and the Prediction of Stock Returns.

Journal of Accounting and Economics 11:295-329.

Péstor, [l., and R. F. Stambaugh. 2003. Liquidity Risk and Expected Stock Returns. Journal of
Political Economy 111:642-85.

Rapach, D. E., J. K. Strauss, and G. Zhou. 2013. International Stock Return Predictability: What Is
the Role of the United States? Journal of Finance 68:1633—62.

Yan, X. S., and L. Zheng. 2017. Fundamental Analysis and the Cross-Section of Stock Returns: A

Data-Mining Approach. Review of Financial Studies 30:1382-423.

40



‘guowr 1od quedred Ul passordxe oIe SUIN)ol [ "SuIngol orojiiod pojydom-onyea Sursn s)nsol
owres o1} syrodal [oued Y3 oy T, ‘A[earioadsel ‘(yg) sorer adieyg pue ((75) SUOIIRIAGD pIepur)s WInjal sorojirod ay) 110der om wwmnjod
YT pue [)Imoj o) ul ‘ATeurq 'sSe[ g Yjm SIoIllo pIepue)s (L86T) 1S9A\ pue AomoN Sursn pajnduiod ‘(7pgs-1) SO1ISIJRIS-] POJRIDOSSR PUR
(ba) smmgol sse0xo ATIUOU PAZI[Ral dFeIoAr o1} 110dol SUWMN[0D I} PUR PU0IdS O], “(paid) [PPOW T 97 WOIJ SUINal Ajuot
pojorpard o8eioar o j10dor om [aued SIUY JO UWN[OD SIY S U] ‘s3Nsax orjojriod pajysem-enbs syiodar pued 9Jo[ oy, ‘SIeak gT e
sAe)s porrod worjepIea ay) o[Iym spuedxo porrod Fururel) o) ‘pIemIo] [[01 om Sy poLiod UOIJepI[RA 91} ST SIR9A g PU02as oY) pue poriod
sururer) o) SI sIeoA gT 151 o], "9R61-€96T SI portod uoryewr)so emrul m() ‘yorordde UOryepIfeA-SSOIO © Julsn siojourered-1odAY [ew
-19do o1y 9001s pue yorordde MOPUIM DATSINDIAI & SN 9AN (' WOII09G UL PACLIISOP Se) STRUSIS [ejuourepuny ¢17‘QT SUISN STLINGOI SSAOXD
renuue 009s 101paId 9pA "6T0E 03 L8GT WOIy swanjol pajorpald T Aq paiios so1[0j)10d S[Iap JO SWINJAI S$80Xa 1) s110dal a[qe) ST T,

0€0 897 vee 070 191 0T 9¢’€ €99 G6°0 VLT 1-0T
L0 96°G 16°¢ 080 19T 870 1.9 Gga'¢ ¥6°0 691 (YStH) 01
€70 qT'g 0¢'c 790 ITT 960 8L°G ¥8°C €6°0 'l 6
geo 87 18T 67°0 160 90 €V'G LT°E 960 2670 8
870 €67 89°¢C 89°0 880 960 JASRS 8T°€ 06°0 880 2
16°0 167 66°C 99°0 080 8G°0 Vg €Ce 06°0 08°0 9
g¥'0 197 ¥€'C 090 €L°0 870 g¥'a CL'C 9.0 €L°0 g
960 097 1¢°€ GL0 ¥9°0 970 ¥9°¢G §99°¢ ¥L°0 ¥9°0 ¥
(4] €LV €9°¢ 840 060 L€°0 ¢c0'9 ¢l'e G990 670 €
9€°0 €4°¢ 6€°C 840 0€°0 8¢'0 ¢c'9 86T 670 0€0 (4
a0 819 0€'T 070 000 10°0- 1674 G0°0- 10°0- ¥0°0- (mo) T
4s as 1035 bay poid as as 354 bay pa+d quvy
PoIYSTom-on[eA poySom-renby

SUINgeY pajoIpald TS £q PoIOg SOI0J1I0] JO 90URWIONS] :T 9[qel,

41



‘guowt 1od queorod ur pesserdxe ore swIngel [y sorjojiiod
PolySom-onyea I0j sjmsal sprodol wojjoq oy, ‘sororiod pajydom-Tenbs 10f symsor sjroder pued doj oy T, [opour 1030v}-b o) pue
‘10390 WNJUOWOUW [IIM POJUSWISNE [9POUW I030R]-G [OUSI]-RWR] oY} ‘[OPOUW I010R]-G (DU -eWR] 9} ‘[OPOW I010R]-f JIR(Ie)) 9}
‘[opou 1039%]-¢ YU J-ewe] oY)} ‘Jopow NJV) 9} U0 paseq sorjojprod Jr{g oy Jo soureuriojrod paisnlpe-ysiui oy} smoys a[qe) SIyJ,

¥6°¢C 890 08¢ 080 8T'¢ 890 99°¢ G9°0 L8°C 97°0 LT°C 97°0 TH
€0V 840 Ve c9°0 08¢ 740 9¢'¢C 760 €C'1 0¢'0 97°0 01°0 (USyH
6’1 rall] 091 LT°0 STANN v1°0 00T 1T°0 €70 90°0 01°0- <200 6
19°'0-  60°0- 66°0- CI'0- 9¢'1-  LT°0- 09°0-  L0°0- ¢0'T- €10 0T°'1- €10 8
€T T~ 1T°0- 10°T-  0T°0- L8T- €10 ge0 €00 €00 00°0 17°0 ¥0°0 .
69'1- ¢I'0- 16°'T- €10 €0'c-  LTO- 0L0 90°0 LV0 700 080 80°0 9
86°0-  L0°0- L8 T- 010 v'T- ¢l'o- 1T°0 10°0 0T°0- 10°0- ¥1°0- 10°0- q
88°0 80°0 0¢°0 00 89°0 G000 101 0T1°0 00°¢ e1'0 191 ¢1'0 4
91'0- ¢0°0- ¥8°0-  80°0- ¢8'0-  800- €¢'0- €00 €¢°0- 200 €6°0-  G00- 3
40 80°0 00°0 00°0 80°0 10°0 8¢'0-  ¥0°0- 0¢'0- €00 9.°0- 1T°0- ¢
65°0- 600" 8¢~ 81°0- €U €10- VLT 1€°0- 06c- 980 0v'g-  9¢0-  (mo)7
3s-3  oydpp mwis-3  oydpo 03s-3  vydpp I035-3  vydpp 035-3  vydp 38-3  oydp yuvy
0 WON+G A qdd Heyqren €dd INdVD
POIYSIOAN anfeA
17°g 86°0 09°¢ 80°T cr's €0'T €79 30°T g¢'9 10'T 0¢'9 10°T TH
297 89°0 vy g9°0 PARS 8¢°0 ¥9°C L€°0 091 Gco ¥8°0 31°0 (USHH
18T S vLEe 6€°0 ST Gge0 80°¢ 6¢°0 ¢C'¢C ¢c0 €e'1 G0 6
8¢ geo ve'e 6¢°0 €C°¢ 8¢°0 ¥e'¢ 6¢°0 LT°G 820 6G°T 0¢°0 8
€L'¢ 9¢°0 99°C 1¢°0 6L°C ¢c0 vL'¢e 00 G0'¢ 1¢°0 92’1 €20 L
€0°C 61°0 16'T q1'0 It 1T°0 08¢ €c’0 LE'C 310 €C'1 ¥¢'0 9
9T'1 60°0 8¢°0 €00 €0 00 90°T 200 0’1 200 36°0 01°0 g
6C'1 60°0 ¥¢0 ¢c00 £€¢0 ¢c0'0 870 €00 060 €00 6¢°0 G0°0 14
0,0 200 ¥€'0-  €0°0- 9¢'0-  €0°0- c90- 900 ¥9'0-  90°0- ve'0-  L0°0- €
LT°0 ¢c0°0 ¢L'0- 600 ¥L°0-  60°0- /F'1-  LTO- 0¢'T- 610 00°T- 1¢°0- 14
8L T-  0€0- €66~ €70 €v'e- vro- g9V~ T.°0- 167~  9L°0- ¢cL'e-  v80- (mo)T
J03s-3  pydpp ys-3  pyd)p 9s-3  pydpp 9s-3  pydpp J035-3  DYdpp J03s-3  pyd)p —
@) WON+GAd Gad jrerIe) edd INdVD

POIYSIoA TeNbH

SUINY POPIPAI T Aq POIIOS SOI0JII0] JO 9OURULIONIDJ POISNIpe-ysTy g 9[qel,

42



‘qyuowt 1od yuedied Ul passardxe are SUINAL [V
"STINYAI PajSrom-onyea Ioj sjynsor syrodar pued woljoq oy, ‘Swnjal pajysrem-renbs 10y synsol spioder oued dog oy, ‘s[rejop I0j g o[qe], 99S
—suInyel pajsnlpe-ysir j1ode1 suwnyod Sururewral oY T, “(YS) soryey odIeyg pojerdosse o) s [[om st sorjojirod 4I01s-SUOT o1[) I0J SUINIOI A[IUOT
o8e1oA® 10dol SUWN]OD 901} ISI O], ‘T 9[qR], Ul PaqLIdsep ainpadoid a1y Surmor[oj penduiod are sjnsal [[y “(uorjeziyejides joyIeU URTPITU
MO[oq M) SYD03S [[ews pue (Uorjezie)ided joyIel URIPAW 2AOQR T[JIM) SYDO)s d5Ie] 10] sorojriod T Jo eoururioltad a1) SMOUs d[qer) ST,

vy 9T'1 8V STl AN YA 80'¢ 0c¢'1 6¢'¢  1C'1 8G¢'¢  RI'T 70T 09°¢  9T'T SH20IS [[eWS
€9'c 990 8¢'c 190 6¢¢c 090 €ec  ¢90 LT TV0 28T S€°0 00 €CT 130 SYo3g adrer
g095-1  vydpp g035-3  Yyd) I035-1  Yyd) 3s-3  pydp Im35-3  pydpo m3s-3  oydpo qS is-1 bay sodueg-qng
6] INOIN+SAA qdd jreqrery edd INdVD SWwImnjeoy

TSOAN ONeA

0Te  ¥IT ge's Vel 8V'¢ €T 86'¢ ¢TI 1¢9 0C'1T 87’9 8I'T 9T'T VT'9  €T'T SHI0IS eWS
L8°€ 060 €9t €60 6€'¢ €60 0L€ 1.0 e 7.0 LTE 120 FASN] €6'C €90 SY0I8 a3Ie]

10953 vydpp g035-3  Yyd)p J035-3  pYd) J03s-3  pyd)p I03s-3  pydpp 0953 vydpp qS 3s-1  bay sordurEg-qng
(¢} INOIN+SAd G Jreyren edd INdVD SWINY
SN Tenby

uorjezipejrde)) Jos[IRJA UO Posey SD031S JO SI9SqIG — SWINGAY PojdIpaid A £q POIIOS SOI[OJIIO] JO 9OURWLIONS] € S[qEL

43



‘puowt 1od juoored
Ul possoIdxo oIe SWINGSI [[Y "SWINISI Pajydlom-onyea I0J sjnsal sprodor pued woljoq oy, "SWINIoI pajysom-renbo 10y symsor sjrodor
Pued doj oy T, "S[Ie1op I0J g S[(R], 99S—SWIN)al pajsnlpe-ysir 110del sSUN[od SUIUTRWDI 9], ‘SOIjeY] odIR(S POIRIDOSSR O} SB [[oM SR
so110J310d 1I0YS-8U0] 979 I0J SWIN_I A[JUoU 98RIAR 110dol SUWMN]0D 991} ISIY Y], G YSNOIY) | WOIJ dFURI Je() SIoAR] UPPIY M
s[opour NN 1oPISU0D 9p\ "StIngol pa1otpaid (NN) JIomjoN [eImaN £q paiios sorjojarod 1101s-8uof Jo soueuriorad o) SMOYS d[qe) SIY T,

00T G20 290 710 9¢'0 ¢TI0 89°0 LT0 9¢'0  ST°0 280 IT0 91°0 gL0 0c¢0 SNN
08T 790 ¥6'T 1970 ¢0'c  ¥90 ¢L’0 ¢co 690 €¢0 0’0 €10 S1°0 090 0¢0 VNN
T10°0- 000 90°'0- TO0- 17°0- 01°0- 1.0 910 €20 900 8¢'0 100 10°0- ¢0'0- T00- ENN
eT'l- §¢0- 9¢'T- LC°0- LT'T- €¢0- ¥0°0- 10°0- 0v'0 800 6.0 1¢0 €00 S1°0 ¥0°0 ¢NN
660 ¥¢0 97’1  ¢€0 660 ST0 8L'T €¢0 ¥0°0- T10°0- €00 100 10°0 €00 T00 TNN
I035-1  pYd)D 1035-3  DYd)D 1035-1  DYd)D 1035-1  DYd)D 1015-1  DYd)D 15-1  pYyd)p - 8-  bay o
@) INOIN+SAA qdAd Jreyrer) €dd INdVD SuImjey
POIYSION dNRA

VLT 9¢0 00T  ¥I0 ¢80 ¢I'o ¥L'0 €10 €60 010 820 900 01°0 870 600 SNN
¢ge 190 6.°¢ €90 29¢  ¢90 vee vvo 86T 1I¥0 9T LEO 70 L0¢c  1¥0 VNN
67'c LE0 29¢  L€0 €8¢ 070 €cc  LE0 ve'e 1o 66'T S€0 070 9.'T 1€0 ENN
9¢'¢  L9°0 107 990 9¢v 190 €67 €80 €69 €60 v0'g 20T 60 8TV 480 ¢NN
1ce  vL°0 Sy 980 Lg’e  €ELO 60°¢ €80 9¢’¢ 990 c0'e 0.0 19°0 61°¢€ 990 TNN
09s-3  pYyd)p I098-3  DYd)D 1098-3  DYd)D 1038-3  DYd)D J038-3  DYd)D 1038-3  DYd)D - is-1  bay POTION
@) IWOIN+SAA Gdd jrey.reny €dd INdVD SUInioy
SN Tenby

SUINY PIPIPAIJ NN Aq POIIOS SOI0JIIO] JO 9OURULIONMDJ T S[(R],

44



‘auowr Tod Jueoted ur pesserdxse ore suIngel [y sorojrrod pajysem-onyeA I0j s)nsal sproder wo)joq oy, sorojrrod pajysem
-renbe 10§ symsal sprodor oued doy oy, [OPOW I1030R}-3H) ) PUR ‘I030R] WNIUSTWIOW [IIM PIUSWSNE [oPOUL I0)0R}-G DU -RIR]
oY) ‘PO I010RJ-G YOUSIL]-RWR 9} ‘[OPOW I010R]-f JIRYIR)) 9} ‘[oPOW I01DRI-¢ [PULIL]-RWR] 9} Topowl NJV) 93} U0 paseq
pore[nores aIe soueuLIolod pajsnlpe-sysu o], 'sieok g1 je sAeis porod uorjeprpea oyj o[iym spuedxo porrod 3ururer) oyj ‘premiof
[[01 om sy poLad UoIepI[eA o) SI SIeaA g PU0dds o) pur polod Fururel) o) St s1eok g1 1sIJ oY ], ‘986T-C96T ST poliod UOIIRIIISO
renmur m() -yoeordde UOIRPI[RA-SSOIO © FUIS siojowrered-rodAy [ewrydo o) 3097es pue yorordde MOPUIM SATISINDOI © 9STL 9A\ S[RU
-31IS JejULWRPUN UO SUOIJROYINSAS SUI[PSRY INO [IIM JUDISISUOD ST YOIYM ‘LQGT WoI uldaq sporad ojdures-Jo-jno o) pue ¢9g1 Wogj
syre)s opdures [ MmO *(g'¢ UOIIDAG UI POQLIISOP SB) S[RUSIS mInjol-jsed T SUISN SWINIDI $590X0 ATJUOU 30038 101paId oA\ "6T0T O3
2861 Wogj stwngal pajorpaid-TiA Aq paiios sorojrod 110Ys-3uo] 1) 10§ soururIojrod pajsnlpe-ssiu pur suwinjarx o) sprodor o[qey STy,

LT°'C 670 €9'¢c €70 0c'€ 990 88°0 LT0 €L T  ¢E0 9.0 610 9¢'0 0¢'T ¢€0 SNN

€60 L20 8¢'0 9T0 0¢'T  6£0 L&0  0T0 L6'T €70 L9°T  6£°0 1€°0 89'T 8E€0 VNN

vw'e  8L0 0L€ €90 ¢€'t 860 9L'¢ €90 Gy <clI'l v 60T 080 6.°¢ 00T ENN

I8¢ €80 99°¢ 890 9¢'€ 00T 6V LL°0 167 €¢'1 €LV 1¢1 8L.°0 ¥eVv 901 ¢NN

80°¢€ 690 vI'e 890 €cr 060 vee  L90 80°¢ ¢0'T vev 860 ¢L0 67V L80 TNN

9¢'T  8¢0 G¢'T  8C0 LEC 990 S0t €90 €y L01 007 LT'T 9%°0 Iv'c 8L°0 ryd
TSN dn[eA

8T'¢c 6¢°0 00¢c L¢0 IL'¢  €€0 ¥1'0 200 ¥6°0 600 20°0- ¢00- 11°0 060 010 SGNN
VLT €70 66'T €70 86'¢c ¢9°0 €g¢'c 870 ¢Ls 9.0 g6'¢  GL0 18°0 ¥9'¢ v.L0 FNN
87 €60 09°L 680 vLSe 911 188 10T oL 0Ol 069 ¢v'l 'l vE€9 0€1 ENN
€% 960 989 €60 ve's  0C'1 696 OT'T gé'8 091 8L €91 Gv'1 9L OVl ¢NN
€87 880 96, .80 666 VI'T €66 €60 18°L ¢CE'1T 9¢°'L ¢E'1 €e'1 19°9 LT'1 TNN
68°€ 8.0 €8°¢ 810 87 601 ¢99 601 069 991 98¢ €91 y0'T €67 8E€'1 IHd
IYSAN Tenby
1081 DY) 1038-1  pYd)D 1038-1  DYd)D 1035-1  DYd)D 1035-1  DYd)D 1035-3  DYd)D

s B pomen

¢) WON+G ¢1d VretIe)) edd INAVD sumyoy

S[euSIS UIN)oY-1SeJ U0 SWINY PoIdIpald TN £q PoiIog SOI[0j1I0] JO 90URWIONS] :G 9[qe],

45



‘auowr 1od Juedtad ur pesserdxe ore suIngel [[y soroyrod pajysem-oniea I0j sjnsal sjrodar wojjoq
oy[, ‘sorojprod pajySrem-renbs 103 symsal syrodaa joued dog oy, ‘opowr 1030v]-h oY} PUR ‘1010R] WNIUSUWIOW [} 1M PIJUSWISNE [9POUT
1090%J-G OUAL{-RWR 9} ‘[9POUl I010R}-G [OUSLI-RUIR O} [oPOW I010R]-f JIRUIR)) 9} ‘[PPOUW I0J0RJ-¢ [DUAIL-RWR] 9} ‘[opout
INdVD 92U} U0 poseq paje[nofes aIe souruLIofod pojsnlpe-ysit oy ], 'sieek gl e sArj)s polad uorjepirea o) o[iym spurdxe porrad
sururer) o) ‘pIeMIo] [[0I om Sy ‘poliod UOI)RPI[RA Y3 ST SIBOA g Puodes oY) pue porpd Jururer) oy) ST sIedA gl 1SIJ o], "986T
-€96 T SI portod uoryewr}se el () yoeoidde uoryepIeAa-ssoId e guisn siojourered-rodAY rewrydo o) 109[es pur yoreordde mopuim
AATSINDAI ' oSN 9p\ *(LT0g) Sueyyz pue ‘puel ‘UedIr) WOIJ S[RUSIS F§ IO PaALdp (0z07) NIX pue ‘A[ed ‘Nmr) (2107) Sueyyz pue
‘puRH ‘USIr) AQ PoIIS[[0d S[RUSIS FG ) SUISTL SWLINISI $S90Xa A[IUOW }01s 101paid oA\ "6T0T O} L8GT Woj s[eusIs jo ojdures 71D
oY) uo suInjar payorpard-N Aq pelros sorjojirod 1I0Ys-guol oY) 10j souruLIofed pajsnlpe-ysu pue swingor o) syrodar spqe) Sy J,

g¢'¢  ¢l0 €6'c €90 0v 180 65'¢c L90 ¢y 180 L9°€ 9.0 67°0 8L'¢ 690 SNN

0c'€ 680 €€'€ 060 Ly SC'1 617 860 L 871 €9 191 ¢80 ¢e9  LET VNN

€T'e  9T'1 86'¢ 00T 18°€  8V'1 g7'e Gl 809  G6'T 8€'¢ V6T 060 €67 TLT ENN

9¢'¢ €71 VEV 6C1 €Ly vLll VLV oVl €19 80°¢C 9¢'¢  70°¢C 66°0 8T'¢ 181 ¢NN

vae  €€T 1Ty Vel 67  0L°1 Wy 0€1 109  96°T 96'¢ 06T g8°0 ¥8¥ 891 TNN

0c'c 601 Le€ ST gc'e 991 807 €T'1 yI'g  0L1 06'¢ 991 1L°0 €SV 1971 ryd
TSN dn[eA

08¢ 061 L6 8LT 7 LLT LeG  TIL1 s 691 6¢°¢ ¢9'1 €e'1 ¢6'G 0L1 SNN
88°L TIL'C 1L, GL°C 868  68°C ¢8'L  8LC 8L°6 66C 8L6 10°€¢ LC'C 666 ¥6C FNN
868 6L°€ €C°6  69°¢ 6¢'6 06°¢ 186  GL¢ ov'or S0v 1€°0T €07 ¥8°C 60°0T 76°¢ ENN
006 19°€ 9¢'6  L9'€ 096 8L'¢ €6 99°¢ 80°0T 96°¢ 00°0T ¥6°€ G6°C €66 L3¢ ¢NN
¢8'8 L9€ 016 L9°€ veE'6  8LE 87’6  09°€ 90°'0T 06°€ 186 98E 69°C VL6 8LE TNN
L9 G€€ G0'8  €V'E gL  99°€¢ 198  LE°€ €16  69°€ 9¢'6  L9°€ Ge¢ 16'8 LG°€ IHd
IYSAN Tenby
w35-1  pYd)p 1038-1  pYd)D 1038-1  DYd)D 1035-1  DYd)D 1035-1  DYd)D 1035-3  DYd)D

as  PEF W ooy

¢) WON+G ¢1d VretIe)) edd INAVD sumyoy

ordureg 7 oY) UO SWINY PaIdIPald TN £q PoIIOS SOI[OJ1I0] JO 90URWLION®] 9 9[qR],

46



‘auowr 1od Juedtad ur pesserdxe ore suIngel [[y soroyrod pajysem-oniea I0j sjnsal sjrodar wojjoq
oy[, ‘sorojprod pajySrem-renbs 103 symsal syrodaa joued dog oy, ‘opowr 1030v]-h oY} PUR ‘1010R] WNIUSUWIOW [} 1M PIJUSWISNE [9POUT
1090%J-G OUAL{-RWR 9} ‘[9POUl I010R}-G [OUSLI-RUIR O} [oPOW I010R]-f JIRUIR)) 9} ‘[PPOUW I0J0RJ-¢ [DUAIL-RWR] 9} ‘[opout
INdVD 92U} U0 poseq paje[nofes aIe souruLIofod pojsnlpe-ysit oy ], 'sieek gl e sArj)s polad uorjepirea o) o[iym spurdxe porrad
sururer) o) ‘pIeMIo] [[0I om Sy ‘poliod UOI)RPI[RA Y3 ST SIBOA g Puodes oY) pue porpd Jururer) oy) ST sIedA gl 1SIJ o], "986T
-€96 T SI portod uoryewr}se el () yoeoidde uoryepIeAa-ssoId e guisn siojourered-rodAY rewrydo o) 109[es pur yoreordde mopuim
AAISINDAI ® 2SN A\ (gg0g) UURULIOWIIy pue Ul A PIIS[[0d S[RUSIS (g o) SUrejuod yoIym ‘eiep/wod Suroradiesseusdo
WOIJ 9SeA[AI RIRD Zg07 UOIRJA o) SUISn SUWINJAI SS90X6 A[juouwl ¥009s 101patd opA 610 O L8GT Wogy s[eudis jo oidues 70 oY)
uo swmjal pojorpard-TIN Aq polros sorfojprod 1I10Us-8uo] oY) 10} soururiofed pojsnlpe-ysur pur swinjal o) sipiodar siqe) sy,

gv'e L80 ¢t €80 9Ty <¢0'l GL'c 6L0 GL'¢ 901 LC€ 660 990 ¢9't €60 SNN

e8¢ 19T €Crv V9l ey TLl 97y 0LT €0'¢  10¢ GLv  20°¢ LTT 67 981 VNN

9% ¢9'1 ¢0'¢ Gl L00¢ 0L°T I8¢ €91 809 10°¢ ¢9'G  €0¢ VI'T 169 081 ENN

€6'€  LET OV 6C°1 ¢y 991 9v V1 VESG L8 €19 681 €01 80°¢ ¢lL'l ¢NN

197 96T 66 981 8¢  GI'¢ ¢L'G 861 9¢'9  0V'¢ 919 1¥¢ 8¢'T €6'G LCC TNN

¢€v  00¢ 119 68T 667 1€¢C 6L  L6'T 'L 89¢ G8'L 89T 8¢'1 66’9 ¢CE'C ryd
TSN dn[eA

819 €61 809 88T €r'9  €6'1 6¢°'G ¢L'1 749G Ll 00°¢ 891 €C'1 YI'g €91 SNN
¥8°'¢  687C 96'¢ I8¢ IT9 L8¢C 009 00°€¢ ¢e9 1I1'¢ 619 7VI'¢ ¢E'C 209 00°€ FNN
w9 VL€ g¥'9  00°¢ 699 €0°¢ V9 vCe ¢cL’9  1€°¢ w9  9€¢ cE'C ¢c’9 8T'€ ENN
¥0'9 1C°€ 609 2r'¢ €c’9  ¢CTI'¢ gc'9  €€¢ .89  OV'E 9¢'9  Iv'€ €¢°C ¢e'9 9¢'¢ ¢NN
9¢’L 69°€ 67°'L €9°€ 69'L 09°€ 9¢'L  69°€ 008 e8¢ €9°L €8¢ ¢8'C €9°L aL€ TNN
1€6 167 00°0T L8F 696 90°G LE0T 00°G €€'0T 8¢'¢ ¥6'6 ¢€G 89°€ 166 8T'¢ IHd
IYSAN Tenby
1081 DY) 1038-1  pYd)D 1038-1  DYd)D 1035-1  DYd)D 1035-1  DYd)D 1035-3  DYd)D

s B pomen

¢) WON+G ¢1d VretIe)) edd INAVD sumyoy

ardureg 70y o} UO SUIN}Y PaOIPald TIN Aq PoII0G SOIOJII0] JO 9OURUIIONDJ :J, d[qe],

47



Table 8: Performance of ML Portfolios on the GHZ Sample with and without Short-term Reversal

GHZ94 GHZ93
Method Ret. t-stat SR Ret. t-stat SR
Equal Weight
BRT 3.57 8.91 2.35 3.04 9.11 1.80
NN1 3.78 9.74 2.69 3.22 9.99 2.46
NN2 3.87 9.93 2.95 3.37 10.68 2.30
NN3 3.94 10.09 2.84 3.27 10.57 2.48
NN4 2.94 9.59 2.27 2.30 8.91 1.84
NN5 1.70 5.92 1.33 0.72 3.65 0.62

Value Weight

BRT 1.51 4.53 0.71 1.11 3.67 0.52
NN1 1.68 4.84 0.85 1.42 4.42 0.77
NN2 1.87 5.18 0.99 1.60 5.75 0.85
NN3 1.71 4.93 0.90 1.50 4.34 0.84
NN4 1.37 6.32 0.82 0.97 3.45 0.58
NNb5 0.69 3.78 0.49 0.30 1.46 0.22

This table reports the long-short returns for the portfolios sorted by ML predicted returns on the GHZ
sample of signals with and without short-term reversal from 1987 to 2019. We predict stock monthly
excess returns using signals from Green, Hand, and Zhang (2017). GHZ94 denotes the original 94
signals used by Gu, Kelly, and Xiu (2020), and GHZ93 denotes the 93 signals excluding short-term
reversal (or momIm). We use a recursive window approach and select the optimal hyper-parameters
using a cross-validation approach. Our initial estimation period is 1963-1986. The first 12 years is
the training period and the second 12 years is the validation period. As we roll forward, the train-
ing period expands while the validation period stays at 12 years. The top panel reports results for
equal-weighted portfolios. The bottom reports results for value-weighted portfolios. All returns are
expressed in percent per month.
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Table 9: Performance of ML Portfolios on the CZ Sample with and without Short-term Reversal

CZ207 CZ206
Method Ret. t-stat SR Ret. t-stat SR
Equal Weight
BRT 5.18 9.91 3.68 4.87 10.05 3.21
NN1 3.72 7.63 2.82 3.32 7.58 2.55
NN2 3.26 6.32 2.23 3.21 6.39 2.27
NN3 3.18 6.22 2.32 3.20 6.30 2.28
NN4 3.00 6.07 2.32 2.86 5.83 1.99
NN5 1.63 5.14 1.23 1.46 4.86 1.20

Value Weight

BRT 2.32 6.99 1.28 2.14 6.26 1.03
NN1 2.27 5.93 1.38 2.02 5.09 1.26
NN2 1.72 5.08 1.03 1.96 5.39 1.09
NN3 1.80 5.21 1.14 1.82 4.77 1.12
NN4 1.86 4.49 1.17 2.07 4.56 1.20
NNb5 0.93 3.62 0.65 1.01 4.49 0.77

This table reports the long-short returns for the portfolios sorted by ML-predicted returns on the CZ
sample of signals with and without short-term reversal from 1987 to 2019. We use the March 2022 re-
lease from openassetpricing.com/data, which contains the 207 signals collected by Chen and Zim-
mermann (2022). CZ207 denotes the 207 signals, and CZ206 denotes the 206 signals after excluding
short-term reversal (Streversal). We use a recursive window approach and select the optimal hyper-
parameters using a cross-validation approach. Our initial estimation period is 1963-1986. The first 12
years is the training period and the second 12 years is the validation period. As we roll forward, the
training period expands while the validation period stays at 12 years. The top panel reports results
for equal-weighted portfolios. The bottom reports results for value-weighted portfolios. All returns
are expressed in percent per month.
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Table 10: Performance of ML Portfolios on Past-return Signals with and without Short-term Reversal

TECH120 TECH119
Method Ret. t-stat SR Ret. t-stat SR
Equal Weighted
BRT 1.81 6.40 1.77 1.38 4.93 1.04
NN1 1.61 7.30 1.98 1.17 6.61 1.33
NN2 1.75 8.82 2.28 1.40 7.46 1.45
NN3 1.52 7.99 1.94 1.30 6.34 1.42
NN4 0.98 6.80 1.21 0.74 5.64 0.81
NN5 0.66 3.73 0.84 0.10 0.50 0.11

Value Weighted

BRT 0.98 3.14 0.66 0.78 241 0.46
NN1 0.72 2.90 0.56 0.87 4.29 0.72
NN2 1.26 4.87 1.02 1.06 4.34 0.78
NN3 1.07 4.10 0.80 1.00 3.79 0.80
NN4 0.92 4.19 0.78 0.38 1.68 0.31
NNb5 0.50 2.45 0.43 0.32 1.30 0.26

This table reports the long-short returns of the portfolios sorted by BRT and NN predicted returns on
past-return signals with and without short-term reversal from 1987 to 2019. We predict stock monthly
excess returns using past-return signals. TECH120 denotes the previous 120 months return signals,
and TECH119 denotes the previous 120 months return signals, excluding the most recent month. Our
full sample period is 1963-2019 and the out-of-sample period is 1987-2019, consistent with our funda-
mental signals analysis. We use a recursive window approach and select the optimal hyper-parameters
using a cross-validation approach. Our initial estimation period is 1963-1986. The first 12 years is
the training period and the second 12 years is the validation period. As we roll forward, the train-
ing period expands while the validation period stays at 12 years. The top panel reports results for
equal-weighted portfolios. The bottom reports results for value-weighted portfolios. All returns are
expressed in percent per month.
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Appendix A: Grids of Hyper-Parameters for Cross Validation

BRT NN
# of iteration € {100, 250, 500, 750, 1000} L1 penalty \; € {107, 1073}
learning rate € {0.01, 0.05, 0.1} Learning Rate LRe {0.001, 0.01}
Batch Size = 10000
Epochs = 100

Patience = 5
Adam Para. = Default

This table shows the grids of hyper-parameters used in the cross validation of Boosted Regression Trees (BRT)
and Neural Networks (NN). We follow Gu, Kelly, and Xiu (2020) to select the grids of hyper-parameters.

53



Appendix B: List of Accounting Variables

# Variable Description Missing Rate  Start Year
1 ACCHG Accounting changes - cumulative effect 39.29% 1988
2 ACO Current assets other total 0.76% 1963
3 ACOX Current assets other sundry 2.20% 1963
4 ACT Current assets - total 2.13% 1963
5 AM Amortization of intangibles 33.03% 1965
6 AO Assets — other 0.06% 1963
7 AOLOCH  Assets and liabilities other net change 38.36% 1988
8 AOX Assets — other - sundry 2.22% 1963
9 AP Accounts payable — trade 4.88% 1963
10  APALCH  Accounts payable & accrued liabilities increase/decrease 53.14% 1988
11 AQC Acquisitions 12.98% 1972
12 AQI Acquisitions income contribution 32.50% 1975
13 AQS Acquisitions sales contribution 32.26% 1975
14 AT Assets — total 0.01% 1963
15 BAST Average short-term borrowing 74.28% 1978
16  CAPS Capital surplus/share premium reserve 2.08% 1963
17 CAPX Capital expenditure 2.18% 1963
18 CAPXV Capital expenditure PPE Schedule V 1.39% 1963
19 CEQ Common/ordinary equity - total 1.54% 1963
20 CEQL Common equity liquidation value 1.62% 1963
21 CEQT Common equity tangible 1.64% 1963
22 CH Cash 12.33% 1963
23 CHE Cash and short-term investments 0.72% 1963
24  CHECH Cash and cash equivalents increase/decrease 28.77% 1972
25 CLD2 Capitalized leases - due in 2nd year 46.55% 1985
26 CLD3 Capitalized leases - due in 3rdyear 46.44% 1985
27 CLD4 Capitalized leases - due in 4thyear 46.18% 1985
28 CLD5 Capitalized leases - due in 5thyear 46.15% 1985
29  COGS Cost of goods sold 0.09% 1963
30 CSTK Common/ordinary stock (capital) 1.96% 1963
31 CSTKCV Common stock-carrying value 28.31% 1963
32 CSTKE Common stock equivalents — dollar savings 0.06% 1963
33 DC Deferred charges 28.45% 1965
34 DCLO Debt capitalized lease obligations 10.08% 1965
35 DCOM Deferred compensation 72.02% 1980
36 DCPSTK  Convertible debt and stock 2.85% 1963
37 DCVSR Debt senior convertible 9.89% 1970
38 DCVSUB Debt subordinated convertible 11.96% 1970
39 DCVT Debt — convertible 5.80% 1963
40 DD Debt debentures 10.55% 1965
41 DD1 Long-term debt due in one year 5.05% 1963
42 DD2 Debt Due in 2nd Year 23.27% 1974
43 DD3 Debt Due in 3rd Year 23.32% 1974
44 DD4 Debt Due in 4th Year 23.16% 1974
45 DD5 Debt Due in 5th Year 24.04% 1974
46  DFS Debt finance subsidiary 79.68% 1992
47 DFXA Depreciation of tangible fixed assets 65.07% 1970
48 DILADJ Dilution adjustment 62.54% 1994
49 DILAVX Dilution available excluding extraordinary items 62.54% 1994
50 DLC Debt in current liabilities - total 0.72% 1963
51 DLCCH Current debt changes 60.86% 1974
52 DLTIS Long-term debt issuance 10.50% 1972
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# Variable Description Missing Rate  Start Year
53  DLTO Other long-term debt 9.96% 1965
54  DLTP Long-term debt tied to prime 38.66% 1975
55 DLTR Long-term debt reduction 9.84% 1972
56  DLTT Long-term debt - total 0.20% 1963
57 DM Debt mortgages &other secured 33.76% 1981
58 DN Debt notes 10.56% 1965
59 DO Income (loss) from discontinued operations 3.66% 1963
60 DONR Nonrecurring discontinued operations 71.10% 1994
61 DP Depreciation and amortization 0.24% 1963
62 DPACT Depreciation , depletion and amortization 0.44% 1963
63  DPC Depreciation and amortization (cash flow) 8.59% 1972
64 DPVIEB Depreciation ending balance (schedule VI) 19.34% 1970
65  DPVIO Depreciation other changes (schedule VI) 65.12% 1970
66  DPVIR Depreciation retirements (schedule VI) 65.14% 1970
67 DRC Deferred revenue current 73.42% 1994
68 DS Debt-subordinated 9.93% 1965
69 DUDD Debt unamortized debt discount and other 29.51% 1963
70 DV Cash dividends (cash flow) 8.55% 1972
71 DVC Dividends common/ordinary 0.11% 1963
72  DVP Dividends - preferred/preference 0.06% 1963
73 DVPA Preferred dividends in arrears 17.95% 1964
74 DVPIBB Depreciation beginning balance (schedule VI) 60.82% 1970
75 DVT Dividends — total 0.11% 1963
76  DXD2 Debt (excl capitalized leases) due in 2nd year 49.31% 1985
77 DXD3 Debt (excl capitalized leases) due in 3rd year 49.25% 1985
78  DXD4 Debt (excl capitalized leases) due in 4thyear 48.96% 1985
79  DXD5 Debt (excl capitalized leases) due in Sthyear 49.36% 1985
80 EBIT Earnings before interest and taxes 1.36% 1963
81  EBITDA Earnings before interest 0.21% 1963
82  ESOPCT ESOP obligation (common) - total 40.69% 1980
83  ESOPDLT ESOP debt - long term 49.09% 1990
84  ESOPT Preferred ESOP obligation - total 41.01% 1964
85 ESUB Equity in earnings -unconsolidated subsidiaries 12.33% 1963
86 ESUBC Equity in net loss earnings 22.05% 1972
87 EXRE Exchange rate effect 38.46% 1988
88 FATB Property, plant, and equipment buildings 51.33% 1985
89 FATC Property, plant and equipment construction in progress 47.36% 1985
90 FATE Property, plant, equipment and machinery equipment 53.32% 1985
91 FATL Property, plant, and equipment leases 57.58% 1985
92 FATN Property, plant, equipment and natural resources 47.37% 1985
93 FATO Property, plant, and equipment other 52.84% 1985
94 FATP Property, plant, equipment and land improvements 51.25% 1985
95 FIAO Financing activities other 38.35% 1988
96 FINCF Financing activities net cash flow 38.35% 1988
97 FOPO Funds from operations other 7.83% 1972
98 FOPOX Funds from operations - Other excl option tax benefit 76.37% 1992
99 FOPT Funds from operations total 69.42% 1972
100 FSRCO Sources of funds other 70.81% 1972
101  FSRCT Sources of funds total 71.27% 1972
102 FUSEO Uses of funds other 70.81% 1972
103 FUSET Uses of funds total 71.61% 1972
104 GDWL Goodwill 47.13% 1989
105 GP Gross profit (loss) 0.09% 1963
106 1B Income before extraordinary items 0.05% 1963
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# Variable Description Missing Rate  Start Year
107 IBADJ IB adjusted for common stock equivalents 0.05% 1963
108 IBC Income before extraordinary items (cash flow) 7.82% 1972
109 IBCOM Income before extraordinary items available for common 0.05% 1963
110 ICAPT Invested capital — total 1.54% 1963
111 IDIT Interest and related income - total 42.18% 1965
112 INTAN Intangible assets — total 10.02% 1963
113 INTC Interest capitalized 16.78% 1963
114 INTPN Interest paid net 43.82% 1988
115 INVCH Inventory decrease (increase) 43.46% 1988
116 INVFG Inventories finished goods 41.28% 1970
117 INVO Inventories other 52.52% 1984
118 INVRM Inventories raw materials 40.27% 1969
119 INVT Inventories — total 1.43% 1963
120 INVWIP Inventories work in progress 43.69% 1970
121 ITCB Investment tax credit (balance sheet) 3.20% 1963
122 ITCI Investment tax credit (income account) 37.65% 1963
123 IVACO Investing activities other 38.35% 1988
124  IVAEQ Investment and advances — equity 9.07% 1963
125 IVAO Investment and advances other 7.07% 1963
126 IVCH Increase in investments 13.68% 1972
127 IVNCF Investing activities net cash flow 38.35% 1988
128 IVST Short-term investments — total 12.35% 1963
129 IVSTCH Short-term investments change 48.38% 1988
130 LCO Current liabilities other total 4.76% 1963
131 LCOX Current liabilities other sundry 6.10% 1963
132 LCOXDR  Current liabilities-other-excl deferred revenue 72.40% 1994
133 LCT Current liabilities — total 1.69% 1963
134 LIFR LIFO reserve 22.04% 1976
135 LO Liabilities — other — total 0.72% 1963
136 LT Liabilities — total 0.50% 1963
137  MIB Minority interest (balance sheet) 6.37% 1963
138 MII Minority interest (income account) 10.24% 1963
139 MRC1 Rental commitments minimum 1styear 27.85% 1975
140 MRC2 Rental commitments minimum 2ndyear 28.34% 1975
141 MRC3 Rental commitments minimum 3rdyear 28.46% 1975
142  MRC4 Rental commitments minimum 4th year 28.61% 1975
143 MRC5 Rental commitments minimum 5th year 30.38% 1975
144 MRCT Rental commitments minimum 5 year total 29.51% 1975
145 MSA Marketable securities adjustment 18.18% 1976
146 NI Net income (loss) 0.06% 1963
147 NIADJ Net income adjusted for common stock equiv. 2.24% 1963
148 NIECI Net income effect capitalized interest 59.92% 1976
149 NOPI Non-operating income (expense) 0.10% 1963
150 NOPIO Non-operating income (expense) other 0.10% 1963
151 NP Notes payable short-term borrowings 0.80% 1963
152  OANCF Operating activities net cash flow 38.36% 1988
153 OB Order backlog 64.22% 1971
154 OIADP Operating income after depreciation 0.07% 1963
155 PI Pre-tax income 0.06% 1963
156 PIDOM Pretax income domestic 74.94% 1981
157  PIFO Pretax income foreign 75.36% 1981
158 PPEGT Property, plant, and equipment — total (gross) 0.45% 1963
159 PPENB Property, plant, and equipment buildings (net) 70.38% 1970
160 PPENC Property plant equipment construction in progress (net) 65.66% 1970
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# Variable Description Missing Rate  Start Year
161 PPENLI Property plant equipment land and improvements (net) 70.26% 1970
162 PPENME  Property plant equipment machinery and equipment (net) 69.73% 1970
163 PPENNR Property plant equipment natural resources (net) 69.31% 1970
164 PPENO Property plant and equipment other (net) 69.26% 1970
165 PPENT Property, plant, and equipment — total (net) 0.11% 1963
166 PPEVBB Property plant equipment beginning balance (schedule V) 57.03% 1963
167 PPEVEB Property, plant, and equipment ending balance 15.25% 1963
168 PPEVO Property, plant, and equipment other changes (schedule V) 62.50% 1963
169 PPEVR Property, plant and equipment retirements (schedule V) 62.50% 1963
170 PRSTKC Purchase of common and preferred stock 12.98% 1972
171  PSTK Preferred /preference stock (capital) — total 0.24% 1963
172 PSTKC Preferred stock convertible 4.96% 1963
173 PSTKL Preferred stock liquidating value 0.05% 1963
174 PSTKN Preferred /preference stock — non-redeemable 1.48% 1963
175  PSTKR Preferred/preference stock - redeemable 20.89% 1964
176  PSTKRV Preferred stock redemption value 0.06% 1963
177 RDIP In process R&D expense 65.68% 1994
178 RE Retained earnings 2.04% 1963
179 REA Retained earnings restatement 10.33% 1970
180 REAJO Retained earnings other adjustments 30.06% 1983
181 RECCH Accounts receivable decrease (increase) 41.58% 1988
182 RECCO Receivables — current — other 3.21% 1963
183 RECD Receivables — estimated doubtful 29.03% 1970
184 RECT Receivables — total 1.45% 1963
185 RECTA Retained earnings cumulative translation adjustment 30.39% 1983
186 RECTR Receivables — trade 17.96% 1967
187 REUNA Retained earnings unadjusted 29.89% 1983
188 SALE Sales/turnover (net) 0.05% 1963
189 SEQ Stockholders’ equity — total 2.24% 1963
190 SIV Sale of investments 16.24% 1972
191 SPI Special items 3.93% 1963
192 SPPE Sale of property 28.92% 1972
193 SPPIV Sale of property plant equipment investments gain (loss) 38.36% 1988
194 SSTK Sale of common and preferred stock 9.55% 1972
195 TLCF Tax loss carry forward 23.48% 1963
196 TSTK Treasury stock — total (all capital) 16.37% 1970
197 TSTKC Treasury stock — common 26.38% 1974
198 TSTKP Treasury stock — preferred 25.51% 1963
199 TXACH Income taxes accrued increase/decrease 56.69% 1988
200 TXBCO Excess tax benefit stock options -cash flow 76.43% 1992
201 TXC Income tax — current 16.78% 1963
202 TXDB Deferred taxes (balance sheet) 3.34% 1963
203 TXDBA Deferred tax asset - long term 73.84% 1993
204 TXDBCA  Deferred tax asset - current 73.11% 1994
205 TXDBCL Deferred tax liability - current 74.46% 1994
206 TXDC Deferred taxes (cash flow) 10.38% 1972
207 TXDFED  Deferred taxes-federal 48.37% 1985
208 TXDFO Deferred taxes-foreign 45.98% 1985
209 TXDI Income tax — deferred 6.99% 1963
210 TXDITC Deferred taxes and investment tax credit 3.34% 1963
211  TXDS Deferred taxes-state 48.91% 1985
212 TXFED Income tax federal 16.78% 1963
213 TXFO Income tax foreign 19.02% 1970
214 TXNDB Net deferred tax asset (liab) - total 69.95% 1994
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# Variable Description Missing Rate  Start Year
215 TXNDBA  Net deferred tax asset 72.66% 1994
216 TXNDBL  Net deferred tax liability 72.67% 1994
217 TXNDBR  Deferred tax residual 72.05% 1994
218 TXO Income taxes - other 33.11% 1963
219 TXP Income tax payable 5.93% 1963
220 TXPD Income taxes paid 45.36% 1988
221 TXR Income tax refund 10.40% 1963
222 TXS Income tax state 17.76% 1963
223 TXT Income tax total 0.06% 1963
224 TXW Excise taxes 24.39% 1976
225 WCAP Working capital (balance sheet) 2.15% 1963
226 WCAPC Working capital change other increase/decrease 72.51% 1972
227 WCAPCH  Working capital change total 74.62% 1972
228 XACC Accrued expenses 19.16% 1963
229 XAD Advertising expense 64.98% 1963
230 XDEPL Depletion expense (schedule VI) 68.80% 1970
231 XI Extraordinary items 1.60% 1963
232  XIDO Extra. items and discontinued operations 0.06% 1963
233 XIDOC Extra. items and disc. operations (cash flow) 9.44% 1972
234 XINT Interest and related expenses — total 5.05% 1963
235 XOPR Operating expenses — total 0.09% 1963
236 XPP Prepaid expenses 43.96% 1963
237 XPR Pension and retirement expense 25.03% 1963
238 XRD Research and development expense 47.01% 1963
239 XRENT Rental expense 14.34% 1963
240 XSGA Selling, general and administrative expense 12.13% 1963

This table lists the 240 accounting variables used in this study and their descriptions. Our sample pe-
riod is 1963-2019. We begin with all accounting variables on the balance sheet, income statement, and
cash flow statement included in the annual Compustat database. We exclude all variables with fewer
than 20 years of data or fewer than 1,000 firms with non-missing data on average per year. We exclude
per-share-based variables such as book value per share and earnings per share. We remove LSE (to-
tal liabilities and equity), REVT (total revenue), OIBDP (operating income before depreciation), and
XDP (depreciation expense) because they are identical to TA (total assets), SALE (total sale), EBITDA
(earnings before interest) and DFXA (depreciation of tangible fixed assets) respectively. Please refer to
Yan and Zheng (2017) for more details.
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Appendix D. Relative Influence Measures

One criticism of machine learning algorithms is that they are “Black Boxes” that do not provide
a lot of intuition to the researcher and the reader. This criticism hardly applies to BRTs that feature
very useful and intuitive visualization tools. The first commonly used measure is referred to as the
“relative influence” measure. Consider the reduction in the empirical error every time one of the
covariates ;.. is used to split the tree. Summing the reductions in empirical errors (or improvements
in fit) across the nodes in the tree gives a measure of the variable’s influence (Breiman, Friedman,

Stone, and Olshen, 1984):

J
L(T) =D Ae()* T (@ () =1),

where Ae (j)* = 71 Zle (et G—1)7°—e (j)2) is the reduction in the squared empirical error at
the j** node and x (j) is the regressor chosen at this node, so I (z (j) =1) equals 1 if regressor [ is
chosen, and 0 otherwise. The sum is computed across all observations, t = 1,...,T, and over the
J — 1 internal nodes of the tree.

The rationale for this measure is that at each node, one of the regressors gets selected to partition
the sample space into two sub-states. The particular regressor at node j achieves the greatest reduction
in the empirical risk of the model fitted up to node j — 1. The importance of each regressor, z; ., is
the sum of the reductions in the empirical errors computed over all internal nodes for which it was
chosen as the splitting variable. If a regressor never gets chosen to conduct the splits, its influence
is zero. Conversely, the more frequently a regressor is used for splitting, and the bigger its effect on
reducing the model’s empirical risk, the larger its influence.

This measure of influence can be generalized by averaging over the number of boosting iterations,

B, which generally provides a more reliable measure of influence:

1 &
Il:E;L(’H’)'

This is best interpreted as a measure of relative influence that can be compared across regressors.
We therefore report the following measure of relative influence, RI;, which sums to 1:

L
Bl -1/ 0
=1

The figure below shows the relative influence of the top 25 signals in the baseline BRT model
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estimated in the paper. We first compute the signals’ relative influence in each year of the test period,
1987-2019, and average their values across all test years. Note that the relative importance measure
across all signals sums to one every year. We then rank and plot the signals according to their average
relative influence. The Y-axis reports the 25 most important signals, while the x-axis presents each

signal’s average relative influence measure.

Ain TXW/ICAPT
A in TXW/EMP

A in MIB/LCT
MII/SEQ

A 'in TSTKP/DLTT
XRD/MKTCAP
Ain MIB/PPENT
AQS/LCT

A in TXW/AT

A TXW/LAGAT
EBITDA/MKTCAP
AQS/SEQ

A CSTKE/LAGPPENT
CSTKE/INVT
FATL/LT

Fundamental Signals

A in ITCB/XSGA

A in CSTKE/MKTCAP
GP/MKTCAP

A in PPENNR/CEQ
CSTKE/XSGA

A in MSA/LCT
NIECI/EMP

Ain AQI/AT

A in TSTKP/PPENT
FATL/EMP

o
=
ul

0.05 0.10
Relative Importance

o
o
S



The figure below shows the relative influence of the top 25 signals in the baseline BRT model on
past return signals. We first compute the signals’ relative influence in each month of the test period,
1987-2019, and average their values across all test months. Note that the relative importance measure
across all signals sums to one every month. We then rank and plot the signals according to their
average relative influence. The Y-axis reports the 25 most important signals in terms of lags, while

the x-axis presents each signal’s average relative influence measure.
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(a) In-Sample and Out-of-Sample R>
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(b) In-Sample and Out-of-Sample Long-Short Return
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Figure TA.1: In- and Out-of-Sample Return Predictability
This figure shows the in- and out-of-sample BRT return predictability. Panel (a) plots the 12-month
moving averages of in- and out-of-sample R2. In-sample (i) denotes the in-sample results with opti-
mal hyper-parameters chosen over the training period 1962 - 1986. For In-sample (ii), the optimal
hyper-parameters are chosen using leave-one-year-out cross-validation over the test period 1987-2019,
following Martin and Nagel (2022). Panel (b) shows the in- and out-of-sample returns of a long-short
portfolio strategy based on BRT forecasts.
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Appendix TA.5: Predictability of Stock Returns across Different Economic and Market Conditions

Equal Weight

Panel A. Sentiment

Value Weight

High Low Diff High Low Diff
1.18 0.79 0.39 0.35 0.52 -0.17
(4.87) (3.45) (1.17) (0.90) (1.90) (-0.36)

Panel B. VIX
Equal Weight Value Weight
High Low Diff High Low Diff
0.8 0.96 -0.16 0.15 0.57 -0.42
(2.74) (5.25) (-0.47) (0.34) (2.28) (-0.85)
Panel C. Liquidity
Equal Weight Value Weight
High Low Diff High Low Diff
0.96 0.94 0.02 0.62 0.18 0.44
(4.64) (3.63) (0.05) (2.18) (0.46) (-0.93)
Panel D. Business Cycle
Equal Weight Value Weight
Recession Expansion Diff Recession Expansion Diff
1.27 0.92 0.35 0.87 0.35 0.52
(1.75) (5.51) (0.47) (0.63) (1.58) (0.37)
Panel E. Past Market Returns
Equal Weight Value Weight
UP DOWN Diff UP DOWN Diff
1.24 0.67 0.57 0.79 0.00 0.79
(4.68) (3.35) (1.73) (2.31) (0.01) (1.67)
Panel F. Calendar Subperiods
Equal Weight Value Weight
1987-2003 2003-2019 Diff 1987-2003 2003-2019 Diff
1.22 0.69 0.53 0.34 0.46 -0.12
(4.32) (3.94) (1.58) (0.82) (1.87) (-0.26)

This table reports the average long-short portfolio returns from the BRT model across subperiods
sorted by economic and market conditions. For sentiment, VIX| liquidity, and past market returns,
we split the sample period into two subperiods based on the median value of the conditioning vari-
able. We then compute the performance of the BRT model across the different subperiods. In Panel
D, we split the sample into recession and expansion based on the NBER recession indicator. In Panel
F, we split the sample period into 1987-2003 and 2003-2019. In all cases, we report the performance
of the long-short BRT portfolio in each subperiod. We also report whether the difference in long-
short performance across different subperiods is statistically significant. All returns are expressed in
percent per month.
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