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Machine Learning

What is Machine Learning?
@ Subset of artificial intelligence

@ Process of teaching a computer how to learn from data

What Does It Do?
@ lIdentifies patterns and relationships in the training data

@ Allows for the prediction of future values and events

Prediction is CRUCIAL in decision-making under uncertainty
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Finance IS decision-making under uncertainty

Credit decisions (mortgages, loans, ...): Predict default

Risk Management: Predict bad scenarios

Financial advice: Predict clients’ needs

Fraud detection: Predict when a transaction is fraudulent

o Asset Management: Predict stock returns
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Al/ML in Asset Management-|
(Time-series Predictability)

ML in Finance Conclusions

Consider the simplest possible investment decision:

@ You want to create a portfolio for one year using

o A riskless security (e.g., T-Bills) with return R¢
o A risky asset (e.g., S&P 500 index) with R

@ You have a quadratic utility function,
o U(EIRy].0) = E[Ry] — 702
o Increasing in E[Rp]: you like higher expected returns
e Decreasing in o: you don'’t like risk

e 7 is the coefficient of risk aversion: how risk affects you
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Al/ML in Asset Management-I|
(Time-series Predictability)

n Finance Conclusions

Main Goal of Asset Allocation
@ Choose fraction “w" in risky asset to maximize utility

e Formally, we want to maximize utility with respect to w:

mvax{U(E[Rp],a)} = max wE[R] + (1 = w)Rs — v (w?0?)

~—
Expected Return Penalty for Risk

@ Take the derivative wrt w, and set it equal to zero:
E[R] — Rr —2ywo? =0

@ Solve it for w and obtain:
_ E[R] - R

*

2702
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Al/ML in Asset Management-II|
(Time-series Predictability)

@ Consider the optimal-weight formula:

_ E[R] - R

*

202

@ Keeping everything else fixed, invest:

@ More in stocks if risk premium increases, E[R] — Rf 1

@ Less in stocks if they become riskier, o T

© Less in stocks if you become more risk averse, v 1

e Modeling E[R] and ¢ is crucial if it changes over time

(The more precise they are, the better-off you are)

Conclusions
o]
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Al/ML in Asset Management-IV
(Cross-Sectional Predictability)

Usually performed via Factor investing:
@ Form portfolios of stocks sorted based on a characteristic

e For example, Size Factor: Return of a portfolio

e Long small capitalization stocks
e Short large capitalization stocks

@ These portfolios should generate high returns on average

@ Can use at most 2 or 3 characteristics to create portfolios
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Al/ML in Asset Management-V
Cross-Sectional Predictability

BUT. The literature discovered 300+ factors!
Paper available here

Why Now?
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Cautionary Tale of ML in Finance
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Table 1
Factor classification
Risk type Description Examples
Common Financial Proxy for aggregate financial market movement, including ket ‘Sharpe (1964): market returns; Kraus and Litzenberger (1976): squared
ary @) lio returns, volatlity, square ers ket retwms
Macro Proxy for movement in macroeconomic fundamentals, including Breeden (1979): consumption growth; Cochrane (1991): investment
@0 consumption, investment, inflation, among others returns
Mierostructure  Proxy for aggregate movements in market microstructure or financial  Pastor and Stambaugh (2003): market liquidity; Lo and Wang (2006):
an ‘market frictions, including liquidity, transaction cost ‘market trading volume
Behayioral investor ntiment or Baker and Wurgler (2006): investor sentiment; Hirshicifer and Jiang
&) hchavmr driven systematic mispricing (2010): market mispricing
Accounting Proxy for aggregate movement i firm-level accounting variables, ‘Fama and French (1992): size and book-to-market; Da and Warachka
® including payout yield, cash flow, among others (2009): cash flow
Other Proxy for aggegate movements that do not fall into the above Carhart (1997): return momentum; Ozoguz (2009); investors” beliefs
® categories, including momentum, investors” beliefs, among others.
Characteristics  Financial Proxy for firm-level idiosyncratic financial risks, including volatility, ~ Ang et . (2006): idiosyncratic volatility; Bali, Cakici, and Whitelaw
@0 ©h extreme returns, among others (2011): extreme stock returns.
Microgetnre  Procy e el fncal ke oios, nchuing shor e Jarrow (1980): short Mayshar (1981):
restrictions, transaction costs, among others
Behayioral Proxy for firm-level behavioral biases, including analyst dispersion, Diether, Malloy, and Scherbina (2002): analyst dispersion; Fang and
@ media coverage, among others Peress (2009): media coverage
Accounting Proxy for firm-level accounting variables, including PE ratio, Basu (1977): PE ratio; Bhandari (1988): debt-to-equity ratio
7 debtto-cquity ratio, among others
Other Proy forflvel vrabesthat do o fll oo the above ctegois, Coope,Gulen, and Ovcinnikov (2010): poltical campign
Edmans (2

ntangibles, among others

The numbers in parentheses represent the number of factors identified. Sec Table 6 and hitp:/faculty.fugua duke.edu~charvey/Factor-List xlsx.

ML allows to incorporate information from all factors jointly

Conclusions
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https://academic.oup.com/rfs/article/29/1/5/1843824
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Machine Learning in Asset
Management. Why Now?



Requirements for good Predictions?

Y
Cheap/better/faster
predictions

DA
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Algorithms (Al/ML)
Big (really big) picture
@ Machine Learning: “prediction based on data”

Artificial
Intelligence

Machine
learning
(=prediction)

Dozens of
different ML
algorithms (e.g.
neural networks)
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Basic (simple) idea of a predictive model

@ Predictive model:
Y = f(X)
@ Y is the outcome we want to predict (e.g., stock returns)

@ X (features/variables) are variables predicting Y

@ f is the function (i.e., algorithm) linking X to Y

A huge number of real problems are prediction-based
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Simple illustrative example

@ Image recognition—10, 000 images of cats or dogs
@ Y=0(CAT)or Y =1 (DOG)

“7“

@ X — attributes of the picture (divide in different pixels)

574

T
= 0
Nl

e E.g., 1000 plxels (partl;;)'f la'b‘ictur-é-)"‘iié:lues
o X = X1,X2, ---7X1000
o Y = f(X]_,X2, ~-7X1000)
How do we determine the parameters of 7
@ Minimize prediction error (e.g., predicting dog when cat)
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How many methods exist to determine 7

DBSCAN "
Naive Bayes

K-means  Agglomerative
Mean-shy <Heos_Adglomerat = W

Fuzzy C-Means

Decision Trees
Logstic Regression

Linear Regression
Polymomal
Regression
Ridge/Lasso

DIMENSION REDUCTION
(gemeralization
tsE A

Rnndom Forest

MACHINE
LEARNING

REINFORCEMENT

LEARNING

Genetic Q-Learning
Algorithm
ki SARSA  Deep Qrietwert
Asc Oa) Catboost

NEURAL
NETS AND
DEEP LEARNING

e Different tools depending on X and Y

Conclusions
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Computing power

I Computing efficiency
Computations per kilowatt-hour

1e416

SiCortex SC5832
le+15 DELL Dimension 2400
le+14
IBM PS/2E& ]
486/25 and 486/33 desktops.
et / /: 5 PS SUN'S51000x8, °
les12

1411
1e+10

149

Computations per KWh (log scale)

1945 50 55 60 65 70 75 8 8 90 95 2000 05 10
Year
Source: Jonathan Koomey

@ GPU more recently

it
kN
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Data Storage and Costs

The Evolution of Data Storage

8inch Floppy 51/21nch UsB Drive s Micto SD. Cloud
Disk Floppy Diskc
Commercially available 1om 1976 2010 2010 2009
Masimum capacity 12mb 12mb. 25660 1280 ~52b
Costpergh, £1000 €800 08 05 <s0gb free

Evonteyy sl il co ok samuevoes co uk

Conclusions
o]



Introduction ML in Asset Management Why Now? Cautionary Tale of ML in Finance Conclusions
[e]e] 00000 00000000080 000000000000 0000 o]

Digitization of the economy

e Digitization creates data as a by-product

@ Digitization lowers the cost of data gathering

e More of existing type of data

o New types of data (Example: Digital footprint)

@ Huge amount of data useful for predictions
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“Alternative” data

Geolocation (foot traffic)
Email receipts

Point-of-sale transactions

e 6 o6 o

Website usage

Satellite images

@ Social media posts

@ Online browsing activity
° ...

@ Product reviews

e Flight and shipping trackers

— Virtually all of them are used by asset managers
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Real-time Machine Learning in the
Cross-Section of Stock Returns

Bin Li Alberto G Rossi
Wuhan University Georgetown University
Xuemin Yan Lingling Zheng
Lehigh University Renmin University

(A Cautionary tale of the Promises of
Machine Learning in Asset Management)
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Introduction ML in Asset Management
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Motivation

Key task in asset management

Identify undervalued and overvalued assets

Hundreds of signals have been discovered

Event

Market

Valuation

Fund 7

Change in Asset Turnover
Change in Profit Margin
Change in Recommendation
Chg. Forecast + Accrual
Debt Issuance

Dividend Initiation
Dividend Omission
Dividends

52-Week High
Age-Momentum
Amihud's Measure
Beta

Bid/Ask Spread
Coskewness
Idiosyncratic Risk
Industry Momentum

Big debate: if and when these

Advertising/ MV

Analyst Value
Book-to-Market

Cash Flow/MV

Dividends

Earnings-to-Price

Enterprise Component of B/P

Enterprise Multiple

signals lose predictive power

Accruals

Age

Asset Growth

Asset Turnover

Cash Flow Variance
Earnings Consistency
Forecast Dispersion
G Index

Conclusions
o]
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Introduction

Motivation

@ Recent years: ML methods have been introduced

Machine
Learning

Anomaly
Variable 1

Anomaly
Variable 2

Anomaly
Variable 3

@ General conclusions:
e “ML provides large economic gains to investors.”
e "ML yields highly profitable investment strategies.”
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Motivation

@ One concern: these studies use the 200-300 signals
discovered and published over the years.

@ Strategies based on subsequently discovered anomaly
variables cannot be implemented in real-time

@ Decline in anomalies’ post-publication performance
(McLean and Pontiff, 2016)

Results reported may overestimate the promises of ML
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This Paper

@ We examine ML strategies based on a “universe” of over
18,000 fundamental signals

@ Signals are constructed from financial statement variables
using permutational arguments

© Stem from investors’ fundamental analysis
@ Implementable in real-time

© Side-step the issue of data mining and look-ahead bias

Compare our results to the ones reported by other studies
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Baseline Setting

@ Sample: 15,035 stocks from July 1963 to June 2019

@ 170,262 firm-year observations: t — 1's fundamental
signals + year t's annual excess return

e 18,113 signals.

e Computationally intensive. Some results required 30 days
of computations on 1,056 cores.
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Boosted Regression Trees (BRT)

Rity1 = f (Xt]|0) + €11

In estimating f(-), we face several challenges:
© Relation btw signals and returns may be nonlinear

@ Traditional methods may face “curse of dimensionality”

We use BRTs as a baseline method because they:
© exhibit strong predictive performance across fields

@ can handle high-dimensional data sets b/c they perform
e variable selection
e shrinkage

© Good interpretability
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Regression trees

A regression tree, T, with J regions (states) and parameters
©, = {5, ¢}/, can be written as:

T(x,0,) = ch (x €5)).

@ 51,5,,...,5,: Jdisjoint states
@ x = (x1,%,...,xp) : P predictor (“state”) variables

@ Dependent variable is constant, ¢;, within each state, S;
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Regression Trees: Intuition

X1 <ty
X2 < ta X1 < tg
X<ty
Ri Ry Rs ’7—‘
R4 Rs

Key features:
@ Partitioning using lines parallel to the coordinate axes
@ Recursive binary partitioning
@ Very hierarchical

@ Use less and less data — overfit
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Boosting

A Boosted Tree Model is a sum of Regression Trees:

fa(x) =Y T(x:0,p)

The B-th boosting iteration fits a tree on:

T-1

6,5 = arg min > let1-1— T(x:©48)°
7B =0

where e, 151 = ¥r+1 — fg_1(x;) are the residuals of the
model with “B-1" iterations.

To minimize the current residuals, the B-th tree finds:
@ The optimal splitting regions, S; g
@ The optimal constants, ¢; 5
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BRT vs linear models

— — Lincar Regr H — ~ Lincar Regression
- Boosted Rogression Trees

Linear Regression
-~ Boosted Regression Trees

-~ Boosled Regression Trees.

(a) 1 iteration (b) 5 iterations (c) 1,000 iterations
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Model Selection

@ Baseline results: Expanding window
@ Training sample: 1963 - 1986; validation: 12 years
@ Test sample: 1987 - 2018

@ Model selection: grid search across hyperparameters
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Performance Evaluation

©@ BRTs Predict stock returns

@ Also use Neural Networks (NNs)

© Form decile portfolios based on expected returns
(equally-weighted)

© Construct High-Low (H-L) long-short portfolios
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Results with Previously Discovered Signals

@ 94 predictors Green et al. (2017) (GHZ)
@ 207 predictors from Chen and Zimmermann (2022) (CZ)

(GHZ) (C2)
Method H-L  t-stat Sharpe H-L  t-stat Sharpe
BRT 42.84% 891 2.35 62.16% 9.91 3.68
NN1 4536% 9.74 2.69 44.64% 7.63 2.82
NN2 46.44% 993 295 39.12% 6.32 2.23
NN3 47.28% 10.09 2.84 38.16% 6.22 2.32
NN4 35.28% 9.59 2.27 36.00% 6.07 2.32

NN5 20.40% 5.92 1.33 19.56% 5.14 1.23
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Introduction ML in Asset Management Why

Results with Universe (18,113) of Signals

Method H-L t-stat Sharpe
BRT 11.40% 3.26 1.02
NN1 12.96% 6.09 1.16
NN2 12.36% 4.10 0.75
NN3 14.04% 5.32 1.10
NN4 11.88% 5.53 0.98

NN5 9.60% 3.79 0.74
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Main Takeaways

@ Many of the outstanding results associated with ML do
not account for the fact they use signals discovered over
time

@ Feature engineering, i.e., the choice of signals fed to ML
methods, is crucial to their performance.

© ML methods are not a panacea in asset management
because financial markets evolve over time
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Conclusions

@ ML and Al tools are becoming very widespread

@ Asset Management is no exception

@ Should assess their effectiveness carefully

e across different contexts

e over time

before deploying them
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